Non-Interactive Publicly-Verifiable Delegation
of Committed Programs

Riddhi Ghosal Amit Sahai Brent Waters
UCLA UCLA UT Austin/NTT Research

Problem Setup

Problem Setup

5] {/>
Truste Program Author | ====_-_ Program: P
/

Problem Setup

Trusted P Auth 2L
ruste ro\%r?m uthor) =2 Program: P

Problem Setup

Trusted P Auth 2L
ruste rogr?m uthor) =2 Program: P

Problem Setup

Trusted Program Author

o

e «= | Program: P

Does not
want to host
or execute P

Problem Setup

Program: P

s

P, state .

\oA o/
Does not
want to host -

or execute P (Untrusted) Worker

Users

Problem Setup

Program: P
\/

P, state .
\oA -/

Does not
want to host
or execute P

(Untrusted) Worker

Input Provider

Problem Setup

Program: P
\/

P, state

Does not
want to host
or execute P

(Untrusted) Worker

Input: x

Input Provider

Problem Setup

Program: P
\/

P, state .
\oA -/

Does not
want to host
or execute P

(Untrusted) Worker

Input: x

Input Provider

Problem Setup

Program: P
\/

P, state .
\oA -/

Does not
want to host
or execute P

(Untrusted) Worker

Users/Verifiers

Input: x

Input Provider

Problem Setup

Program: P
\/

P, state .
\oA -/

Does not
want to host
or execute P

(Untrusted) Worker

Users/Verifiers

Input: x

Input Provider

Problem Setup

Program: P

\J/

Accept iff
TT is valid

P, state .
\oA -/

Does not
want to host
or execute P

(Untrusted) Worker Users/Verifiers

Input: x

Input Provider

Problem Setup

Program: P

\J/

Accept iff
TT is valid

P, state

Does not
want to host
or execute P

InputProvider ‘.IIIIIIIIIIIII--

Problem Setup

Trusted Program Author
s

e «= | Program: P

Accept iff
TT is valid

P, state

Input: x (Untrusted) Worker Users/Verifiers

Input Provider

Problem Setup

Trusted Program Author
s

e «= | Program: P

Trusted Hash Accept iff
Hp TT is valid

P, state

(Untrusted) Worker Users/Verifiers

Input: x

Input Provider

Goals

Goals

Goals

P(x), I

e Uni-directional Arrows
e No Back and Forth Communication

e Same proof TT for all verifiers

e No pre-processing specific to P before delegating to Worker
e No dependence of Hp on input x

* |TT[: poly (4,log [P], |x|)
e Verifier run-time: poly (4,log |P|, |x|)
e Prover run-time: poly (4, |P], |x])

Comparison with Prior Work

Comparison with Prior Work
* [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

Comparison with Prior Work
* [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

[Mic00,BCC+17,Gro10,PR17]:
Random Oracle/Non Standard
Knowledge Assumptions

e [KPY19]: Standard Assumptions
but verifier knows P

N LB EETERT I EEE » [KP16]: LWE (Private Verification)

* [KRR13]: Subexp secure FHE (Private
Verification)

[GGP10]: FHE (Private Delegation)

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

The SNARGS for NP barrier

‘L)> Why has constructing a protocol that caters to the fully non-
o interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

The SNARGS for NP barrier

‘L)> Why has constructing a protocol that caters to the fully non-
o interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

The SNARGS for NP barrier

‘L)> Why has constructing a protocol that caters to the fully non-
o interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

The SNARGS for NP barrier

Cl?) Why has constructing a protocol that caters to the fully non-
o interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

Very recent work [CJJ21] comes the closest by achieving “SNARG for P from LWE”

Comparison with Prior Work
* [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

[Mic00,BCC+17,Gro10,PR17]: Random
Oracle/Non Standard Knowledge
Assumptions

e [KPY19]: Standard Assumptions but
verifier knows P

N EEETERTd I » [KP16]: LWE (Private Verification)
* [KRR13]: Subexp secure FHE
(Private Verification)

[GGP10]: FHE (Private Delegation)

Comparison with Prior Work
* [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

Our Work: Fully Non-lnteractive\

Public Delegation + Public C+17,Gro10,PR17]: Random

Verification from Standard n Standard Knowled
o ° ° 0 A o fre ge
Non-Interactive Schemes: {Egéi]?;]'- Assumptions and Verifier does s
) ' not know P i
(Private Von. ,)tandard Assumptions but

verifier knows P

[GGP10]: FHE (Private Delegation)

Comparison with Prior Work
* [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

[Mic00,BCC+17,Gro10,PR17]: Random
Oracle/Non Standard Knowledge
Assumptions

e [KPY19]: Standard Assumptions but
verifier knows P

-

N EEETERTd I » [KP16]: LWE (Private Verification)
* [KRR13]: Subexp secure FHE
(Private Verification)

[GGP10]: FHE (Private Delegation)

Our Work: Standard Assumptions
and Verifier does not know P

.

Our Contribution

Our Contribution

Our Contribution

Can bypass the need of “SNARG for NP”

o

-

_

* |deas from the “SNARG for P” can indeed be used
e Suffices for Alice to communicate a tiny amount of information about P to the Verifier
* Size of trusted Hp = poly log |P|

~

)

Our Contribution

o

Can bypass the need of “SNARG for NP”

a N
* |deas from the “SNARG for P” can indeed be used
e Suffices for Alice to communicate a tiny amount of information about P to the Verifier
* Size of trusted Hp = poly log |P|

- /

Assuming the hardness of the L\WE problem, there exists a construction
Main Theorem for publicly verifiable non-interactive succinct delegation for committed

programs with CRS size, proof size and verifier time poly(A, log [P/, |x])
and prover run time being poly(A, [P/, |x]).

Publicly Verifiable Non-Interactive Succinct Delegation

Such a delegation scheme in the CRS model involves the following PPT algorithms:

Setup(1%): Randomized setup algorithm that outputs crs

ProgAuth(14, crs): Randomized algorithm that outputs P, state, Hp

Prover(crs, P, state, Hp, x): Deterministic algorithm that outputs a value y and proof]

Verifier(crs, Hp, x, y,TT): Deterministic verifier which either accepts or rejects

Publicly Verifiable Non-Interactive Succinct Delegation

4 Completeness I

For all PPT ProgAuth, if crs is appropriately generated and Prover runs honestly then,
Pr[V(crs, Hp,x,y,TI) = 1AP(x) =y] =1

Publicly Verifiable Non-Interactive Succinct Delegation

e Completeness I

For all PPT ProgAuth, if crs is appropriately generated and Prover runs honestly then,
Pr[V(CTSJHP;ny)H) =1 /\P(x) = y] =1

Efficiency
Setup runs in time poly(4) W runs in time poly(4, |P|, |x])
Proof Size: poly(A, log |P|, |x|) V runs in time poly (4, log |P|, | x|)

Publicly Verifiable Non-Interactive Succinct Delegation

4 Completeness I

For all PPT ProgAuth, if crs is appropriately generated and Prover runs honestly then,
Pr[V(CTS»HP;x;)’;H) =1 /\P(.X') = y] =1

Efficiency

Setup runs in time poly(4) W runs in time poly(4, |P|, |x])
Proof Size: poly(A, log |P|, |x|) V runs in time poly(4, log |P]|, |x|)

/ Soundness \

For all PPT adversaries (4;, A,) and all ProgAuth, if crs is appropriately generated and (x, aux) « A, (crs),
(v, 1) « A,(crs, P, Hp, x, aux), then

Pr(V(crs,Hp,x,y,TT) = 1 A P(x) # y] < negl(A)

Informal Technical Overview

Informal Technical Overview

[* Consider the execution of P as a deterministic Turing Machine computation on input x.

Informal Technical Overview

* Consider the execution of P as a deterministic Turing Machine computation on input x.

* P accepts x if P(x) = y within T steps .

Informal Technical Overview

Vs

Consider the execution of P as a deterministic Turing Machine computation on input x.

* P accepts x if P(x) = y within T steps .

* Let hy, hy, h, ... hy be succinct encodings of the Turing Machine state and tape content during these
T intermediate steps.

Informal Technical Overview

* Consider the execution of P as a deterministic Turing Machine computation on input x.

* P accepts x if P(x) = y within T steps .

[- Let hy, hq, h, ... hy be succinct encodings of the Turing Machine state and tape content during these J

T intermediate steps.
oa... 001,

1
\I Hash Tree r
\n{i:poly(l)

Informal Technical Overview

Vs

* Consider the execution of P as a deterministic Turing Machine computation on input x.

* P accepts x if P(x) = y within T steps .

.

[° Let hy, hq, h, ... hy be succinct encodings of the Turing Machine state and tape content during these J

T intermediate steps.
o3... 4,

1
\I Hash Tree r
\n{i:poly(l)

* If hy encodes the correct input x and hy encodes an accepting state, then by CJJ21, we can
construct a SNARG to prove that the computation was performed honestly.

Informal Technical Overview

Vs

* Consider the execution of P as a deterministic Turing Machine computation on input x.

* P accepts x if P(x) = y within T steps .

.

{° Let hy, hq, h, ... hy be succinct encodings of the Turing Machine state and tape content during these J

T intermediate steps.
o3... 4,

1
\[Hash Tree r
\n{i:poly(l)

* If hy encodes the correct input x and hy encodes an accepting state, then by CJJ21, we can
construct a SNARG to prove that the computation was performed honestly.

We do not know P

Informal Technical Overview

Informal Technical Overview

An alternate way to interpret computation of P on x:

K. TM acceptsinT' = O(|P|log |P]) stepsif P(x) =y

™

* Consider a Universal Turing Machine TM which takes (P, x, y) as input

)

[° Consider TM has three tapes: 3 read only input tapes for P, x and y, and one work tape.

Informal Technical Overview

™

An alternate way to interpret computation of P on x:

* Consider a Universal Turing Machine TM which takes (P, x, y) as input
 TM acceptsinT' = O(|P|log|P|) stepsif P(x) =y y

Ve

* Consider TM has three tapes: 3 read only input tapes for P, x and y, and one work tape.

.

Vs

* Let hgy, hy, h, ... hp, be the turing machine state and tape content during the T’ intermediate steps.

.

Informal Technical Overview

2N

An alternate way to interpret computation of P on x:

* Consider a Universal Turing Machine TM which takes (P, x, y) as input
\' TM acceptsinT' = O(|P|log |P]) stepsif P(x) =y y

Consider TM has three tapes: 3 read only input tapes for P, x and y, and one work tape.

Let hy, hq, h, ... hy, be the turing machine state and tape content during the T’ intermediate steps.

If hy encodes the correct inputs (P, x,y) and hr, encodes an accepting state, then by CJJ21, we can construct SNARG
to prove that the computation was performed honestly.

Informal Technical Overview

2N

An alternate way to interpret computation of P on x:

* Consider a Universal Turing Machine TM which takes (P, x, y) as input
\' TM acceptsinT' = O(|P|log |P]) stepsif P(x) =y y

Ve

* Consider TM has three tapes: 3 read only input tapes for P, x and y, and one work tape.

* Let hgy, hy, h, ... hp, be the turing machine state and tape content during the T’ intermediate steps.

p
* If hy encodes the correct inluts (P, x,y) and hy, encodes an accepting state, then by CJJ21, we can construct SNARG

to prove that the computatﬁm was performed honestly.

-

Informal Technical Overview

* Note hy contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if
they have been correctly input to the TM.

Informal Technical Overview

* Note hy contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if
they have been correctly input to the TM.

Informal Technical Overview

* Note hy contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if
they have been correctly input to the TM.

Construction: Brief Technical Details

Construction: Brief Technical Details

Remember
Hp?

Construction: Brief Technical Details

Remember
Hp?

[- Hardcode succinct Hp to the verification circuit.

Construction: Brief Technical Details

Remember
Hp?

Vs

\

Hardcode succinct Hp to the verification circuit.

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly

generated Hp.

Construction: Brief Technical Details

Remember
Hp?

Vs

\

Hardcode succinct Hp to the verification circuit.

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly

generated Hp.

Construction: Brief Technical Details

Remember
Hp?

Vs

e Hardcode succinct Hp to the verification circuit.

\

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly
generated Hp.

p
* Ifitdoes, then TM must have received the correct input P, otherwise the prover would break Collision Resistance of
the hash function which generated Hp.

Construction: Brief Technical Details

Remember
Hp?

= Hp? hy: poly(4)

Vs

e Hardcode succinct Hp to the verification circuit.

\

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly
generated Hp.

p
* Ifitdoes, then TM must have received the correct input P, otherwise the prover would break Collision Resistance of
the hash function which generated Hp.

Vs

* Now, we can use the techniques from CJJ21 to construct a SNARG

\

Construction: Brief Technical Details

Remember
Hp?

= Hp? hy: poly(4)

Vs

e Hardcode succinct Hp to the verification circuit.

\

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly
generated Hp.

o Ifit does, then TM must have received the correct input P, otherwise the prover would break Collision Resistance of
the hash function which generated Hp.

Vs

* Now, we can use the techniques from CJJ21 to construct a SEMI-TRUSTED SNARG For NP.

\

Bonus Contribution: Zero Knowledge

Bonus Contribution: Zero Knowledge

[* We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

Bonus Contribution: Zero Knowledge

Vs

\

We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

\

Ve
[]

The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

Bonus Contribution: Zero Knowledge

Vs

* We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

\

([« The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

[Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion J

Bonus Contribution: Zero Knowledge

Vs

\

We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

[Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion J

[0 Add a commitment of O to the CRS.

Bonus Contribution: Zero Knowledge

Vs

* We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

\

([« The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

[Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion J

[° Add a commitment of O to the CRS.

* Instead of sending the proof [[which we discussed before, the prover sends a NIZK/NIWI argument for the
following NP statement:

[1is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

Bonus Contribution: Zero Knowledge

()

* We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

(N J/

Ve

* The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

[Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion J

[- Add a commitment of O to the CRS.]

* Instead of sending the proof [[which we discussed before, the prover sends a NIZK/NIWI argument for the
following NP statement:

[1is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

_ J

* Nothing changes in the real world. In the simulated world, we can switch the CRS to have a commitment of 1 and the
NIZK/NIWI proof will not use [] at all.

THANK YOU!

