
Non-Interactive	Publicly-Verifiable	Delegation	
of	Committed	Programs

Riddhi Ghosal Amit Sahai                    Brent Waters
UCLA                                       UCLA                         UT Austin/NTT Research



Problem	Setup

P



Problem	Setup
Trusted Program Author

Alice

Program: P

P



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

P



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

Does not 
want to host 
or execute P

P



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x



Problem	Setup
Trusted Program Author

Alice

Program: P

Users

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x)



Problem	Setup
Trusted Program Author

Alice

Program: P

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x)

Users/Verifiers



Problem	Setup
Trusted Program Author

Alice

Program: P

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x), ∏

Users/Verifiers



Problem	Setup
Trusted Program Author

Alice

Program: P

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x), ∏

Users/Verifiers

Accept iff
∏ is valid



Problem	Setup
Trusted Program Author

Alice

Program: P

P

Does not 
want to host 
or execute P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x), ∏

Users/Verifiers

Can be the same identity

Accept iff
∏ is valid



Problem	Setup
Trusted Program Author

Alice

Program: P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x), ∏

Users/Verifiers

Accept iff
∏ is valid



Trusted Hash
HP

Problem	Setup
Trusted Program Author

Alice

Program: P

P, state

(Untrusted) Worker

Input Provider

Input: x

Input: x

P(x), ∏

Users/Verifiers

Accept iff
∏ is valid



Goals



Goals HP

𝑃

𝑃, state

𝑥
𝑥

𝑃(𝑥), ∏



Goals

• Uni-directional Arrows
• No Back and Forth CommunicationNon-Interactive Delegation

• Same proof ∏ for all verifiersPublic Verification

• No pre-processing specific to 𝑃 before delegating to Worker
• No dependence of 𝐻! on input 𝑥Public Delegation

• |∏|: poly (𝜆, log |𝑃| , |𝑥|)
• Verifier run-time: poly (𝜆, log |𝑃| , |𝑥|)
• Prover run-time: poly (𝜆, |𝑃|, |𝑥|)

Succinctness

HP

𝑃

𝑃, state

𝑥
𝑥

𝑃(𝑥), ∏



Comparison	with	Prior	Work



Comparison	with	Prior	Work
Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker



Comparison	with	Prior	Work

Non-Interactive Schemes:

Private Verification/Delegation Public Delegation + Public 
Verification

• [KP16]: LWE (Private Verification)
• [KRR13]: Subexp secure FHE (Private 

Verification)
• [GGP10]: FHE (Private Delegation)

• [Mic00,BCC+17,Gro10,PR17]: 
Random Oracle/Non Standard
Knowledge Assumptions

• [KPY19]: Standard Assumptions 
but verifier knows P

Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker



Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?



Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness



The	SNARGS	for	NP	barrier

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem



The	SNARGS	for	NP	barrier

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions



The	SNARGS	for	NP	barrier

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade



The	SNARGS	for	NP	barrier

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

Very recent work [CJJ21] comes the closest by achieving “SNARG for P from LWE” 



Comparison	with	Prior	Work

Non-Interactive Schemes:

Private Verification/Delegation Public Delegation + Public Verification

• [KP16]: LWE (Private Verification)
• [KRR13]: Subexp secure FHE 

(Private Verification)
• [GGP10]: FHE (Private Delegation)

• [Mic00,BCC+17,Gro10,PR17]: Random 
Oracle/Non Standard Knowledge 
Assumptions

• [KPY19]: Standard Assumptions but 
verifier knows P

Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker



Comparison	with	Prior	Work

Non-Interactive Schemes:

Private Verification/Delegation Public Delegation + Public Verification

• [KP16]: LWE (Private Verification)
• [KRR13]: Subexp secure FHE 

(Private Verification)
• [GGP10]: FHE (Private Delegation)

• [Mic00,BCC+17,Gro10,PR17]: Random 
Oracle/Non Standard Knowledge 
Assumptions

• [KPY19]: Standard Assumptions but 
verifier knows P

Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

Our Work: Fully Non-Interactive 
Public Delegation + Public 
Verification from Standard 

Assumptions and Verifier does 
not know P



Comparison	with	Prior	Work

Non-Interactive Schemes:

Private Verification/Delegation Public Delegation + Public Verification

• [KP16]: LWE (Private Verification)
• [KRR13]: Subexp secure FHE 

(Private Verification)
• [GGP10]: FHE (Private Delegation)

• [Mic00,BCC+17,Gro10,PR17]: Random 
Oracle/Non Standard Knowledge 
Assumptions

• [KPY19]: Standard Assumptions but 
verifier knows P

Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

Our Work: Standard Assumptions 
and Verifier does not know P



Our	Contribution



Our	Contribution
Can bypass the need of “SNARG for NP”



Our	Contribution

• Ideas from the “SNARG for P” can indeed be used 
• Suffices for Alice to communicate a tiny amount of information about 𝑃 to the Verifier
• Size of trustedH! = poly log |P|

Can bypass the need of “SNARG for NP”



Our	Contribution

• Ideas from the “SNARG for P” can indeed be used 
• Suffices for Alice to communicate a tiny amount of information about 𝑃 to the Verifier
• Size of trustedH! = poly log |P|

Can bypass the need of “SNARG for NP”

Assuming the hardness of the LWE problem, there exists a construction 
for publicly verifiable non-interactive succinct delegation for committed 
programs with CRS size, proof size and verifier time poly(λ, log |P|, |x|) 
and prover run time being poly(λ, |P|, |x|).

Main Theorem



Publicly	Verifiable	Non-Interactive	Succinct	Delegation

Such a delegation scheme in the CRS model involves the following PPT algorithms:

• Setup(1𝜆): Randomized setup algorithm that outputs crs
• ProgAuth(1𝜆, 𝑐𝑟𝑠): Randomized algorithm that outputs 𝑃, 𝑠𝑡𝑎𝑡𝑒, 𝐻"
• Prover(crs, 𝑃, 𝑠𝑡𝑎𝑡𝑒, 𝐻", 𝑥): Deterministic algorithm that outputs a value 𝑦 and proof ∏
• Verifier(crs, 𝐻", 𝑥, 𝑦,∏): Deterministic verifier which either accepts or rejects



Publicly	Verifiable	Non-Interactive	Succinct	Delegation

Completeness

For all PPT ProgAuth, if 𝑐𝑟𝑠 is appropriately generated and Prover runs honestly then,
Pr 𝑉 𝑐𝑟𝑠, 𝐻! , 𝑥, 𝑦,∏ = 1 ∧ 𝑃 𝑥 = 𝑦 = 1



Publicly	Verifiable	Non-Interactive	Succinct	Delegation

Completeness

For all PPT ProgAuth, if 𝑐𝑟𝑠 is appropriately generated and Prover runs honestly then,
Pr 𝑉 𝑐𝑟𝑠, 𝐻! , 𝑥, 𝑦,∏ = 1 ∧ 𝑃 𝑥 = 𝑦 = 1

Efficiency
Setup runs in time 𝑝𝑜𝑙𝑦 𝜆 W runs in time 𝑝𝑜𝑙𝑦 𝜆, 𝑃 , 𝑥

Proof Size: 𝑝𝑜𝑙𝑦 𝜆, 𝑙𝑜𝑔 𝑃 , 𝑥 V runs in time 𝑝𝑜𝑙𝑦 𝜆, 𝑙𝑜𝑔 𝑃 , 𝑥



Publicly	Verifiable	Non-Interactive	Succinct	Delegation

Completeness

For all PPT ProgAuth, if 𝑐𝑟𝑠 is appropriately generated and Prover runs honestly then,
Pr 𝑉 𝑐𝑟𝑠, 𝐻! , 𝑥, 𝑦,∏ = 1 ∧ 𝑃 𝑥 = 𝑦 = 1

Efficiency
Setup runs in time 𝑝𝑜𝑙𝑦 𝜆 W runs in time 𝑝𝑜𝑙𝑦 𝜆, 𝑃 , 𝑥

Proof Size: 𝑝𝑜𝑙𝑦 𝜆, 𝑙𝑜𝑔 𝑃 , 𝑥 V runs in time 𝑝𝑜𝑙𝑦 𝜆, 𝑙𝑜𝑔 𝑃 , 𝑥

Soundness

For all PPT adversaries (𝐴", 𝐴#) and all ProgAuth, if 𝑐𝑟𝑠 is appropriately generated and x, aux ← 𝐴" 𝑐𝑟𝑠 ,
y,∏ ← 𝐴# 𝑐𝑟𝑠, 𝑃, 𝐻! , 𝑥, 𝑎𝑢𝑥 , then

Pr 𝑉 𝑐𝑟𝑠, 𝐻! , 𝑥, 𝑦,∏ = 1 ∧ 𝑃 𝑥 ≠ 𝑦 ≤ 𝑛𝑒𝑔𝑙(𝜆)



Informal	Technical	Overview



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.

• 𝑃 accepts 𝑥 if 𝑃 𝑥 = 𝑦 within 𝑇 steps .



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.

• 𝑃 accepts 𝑥 if 𝑃 𝑥 = 𝑦 within 𝑇 steps .

• Let ℎ$, ℎ", ℎ#…ℎ% be succinct encodings of the Turing Machine state and tape content during these 
𝑇 intermediate steps.



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.

• 𝑃 accepts 𝑥 if 𝑃 𝑥 = 𝑦 within 𝑇 steps .

• Let ℎ$, ℎ", ℎ#…ℎ% be succinct encodings of the Turing Machine state and tape content during these 
𝑇 intermediate steps.

………

ℎ&: poly(𝜆)

Hash Tree



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.

• 𝑃 accepts 𝑥 if 𝑃 𝑥 = 𝑦 within 𝑇 steps .

• Let ℎ$, ℎ", ℎ#…ℎ% be succinct encodings of the Turing Machine state and tape content during these 
𝑇 intermediate steps.

• If ℎ$ encodes the correct input 𝑥 and ℎ% encodes an accepting state, then by CJJ21, we can 
construct a SNARG to prove that the computation was performed honestly. 

………

ℎ&: poly(𝜆)

Hash Tree



Informal	Technical	Overview
• Consider the execution of 𝑃 as a deterministic Turing Machine computation on input 𝑥.

• 𝑃 accepts 𝑥 if 𝑃 𝑥 = 𝑦 within 𝑇 steps .

• Let ℎ$, ℎ", ℎ#…ℎ% be succinct encodings of the Turing Machine state and tape content during these 
𝑇 intermediate steps.

• If ℎ$ encodes the correct input 𝑥 and ℎ% encodes an accepting state, then by CJJ21, we can 
construct a SNARG to prove that the computation was performed honestly. 

We do not know 𝑃

………

ℎ&: poly(𝜆)

Hash Tree



Informal	Technical	Overview

An alternate way to interpret computation of 𝑃 on 𝑥:

• Consider a Universal Turing Machine 𝑇𝑀 which takes (𝑃, 𝑥, 𝑦) as input
• 𝑇𝑀 accepts in 𝑇′ = 𝑂( 𝑃 log |𝑃|) steps if 𝑃 𝑥 = 𝑦



Informal	Technical	Overview

An alternate way to interpret computation of 𝑃 on 𝑥:

• Consider a Universal Turing Machine 𝑇𝑀 which takes (𝑃, 𝑥, 𝑦) as input
• 𝑇𝑀 accepts in 𝑇′ = 𝑂( 𝑃 log |𝑃|) steps if 𝑃 𝑥 = 𝑦

• Consider 𝑇𝑀 has three tapes: 3 read only input tapes for 𝑃, 𝑥 and 𝑦, and one work tape.



Informal	Technical	Overview

An alternate way to interpret computation of 𝑃 on 𝑥:

• Consider a Universal Turing Machine 𝑇𝑀 which takes (𝑃, 𝑥, 𝑦) as input
• 𝑇𝑀 accepts in 𝑇′ = 𝑂( 𝑃 log |𝑃|) steps if 𝑃 𝑥 = 𝑦

• Let ℎ$, ℎ", ℎ#…ℎ%' be the turing machine state and tape content during the 𝑇′ intermediate steps.

• Consider 𝑇𝑀 has three tapes: 3 read only input tapes for 𝑃, 𝑥 and 𝑦, and one work tape.



Informal	Technical	Overview

An alternate way to interpret computation of 𝑃 on 𝑥:

• Consider a Universal Turing Machine 𝑇𝑀 which takes (𝑃, 𝑥, 𝑦) as input
• 𝑇𝑀 accepts in 𝑇′ = 𝑂( 𝑃 log |𝑃|) steps if 𝑃 𝑥 = 𝑦

• Let ℎ$, ℎ", ℎ#…ℎ%' be the turing machine state and tape content during the 𝑇′ intermediate steps.

• Consider 𝑇𝑀 has three tapes: 3 read only input tapes for 𝑃, 𝑥 and 𝑦, and one work tape.

• If ℎ$ encodes the correct inputs (P, 𝑥, 𝑦) and ℎ%' encodes an accepting state, then by CJJ21, we can construct SNARG 
to prove that the computation was performed honestly. 



Informal	Technical	Overview

An alternate way to interpret computation of 𝑃 on 𝑥:

• Consider a Universal Turing Machine 𝑇𝑀 which takes (𝑃, 𝑥, 𝑦) as input
• 𝑇𝑀 accepts in 𝑇′ = 𝑂( 𝑃 log |𝑃|) steps if 𝑃 𝑥 = 𝑦

• Let ℎ$, ℎ", ℎ#…ℎ%' be the turing machine state and tape content during the 𝑇′ intermediate steps.

• Consider 𝑇𝑀 has three tapes: 3 read only input tapes for 𝑃, 𝑥 and 𝑦, and one work tape.

• If ℎ$ encodes the correct inputs (P, 𝑥, 𝑦) and ℎ%' encodes an accepting state, then by CJJ21, we can construct SNARG 
to prove that the computation was performed honestly. 



Informal	Technical	Overview

• Note ℎ$ contains succinct encodings of the inputs P, 𝑥, 𝑦 . Since 𝑥, 𝑦 are publicly known, it can be easily verified if 
they have been correctly input to the 𝑇𝑀. 



Informal	Technical	Overview

• Note ℎ$ contains succinct encodings of the inputs P, 𝑥, 𝑦 . Since 𝑥, 𝑦 are publicly known, it can be easily verified if 
they have been correctly input to the 𝑇𝑀. 

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y



Informal	Technical	Overview

• Note ℎ$ contains succinct encodings of the inputs P, 𝑥, 𝑦 . Since 𝑥, 𝑦 are publicly known, it can be easily verified if 
they have been correctly input to the 𝑇𝑀. 

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y



Construction:	Brief	Technical	Details
……… ………………

ℎ$: poly(𝜆)

P 𝑥 y



Construction:	Brief	Technical	Details

Remember 
HP?

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

• If it does, then 𝑇𝑀 must have received the correct input 𝑃, otherwise the prover would break Collision Resistance of 
the hash function which generated 𝐻!.

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

• If it does, then 𝑇𝑀 must have received the correct input 𝑃, otherwise the prover would break Collision Resistance of 
the hash function which generated 𝐻!.

• Now, we can use the techniques from CJJ21 to construct a                             SNARG

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?



Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

• If it does, then 𝑇𝑀 must have received the correct input 𝑃, otherwise the prover would break Collision Resistance of 
the hash function which generated 𝐻!.

• Now, we can use the techniques from CJJ21 to construct a                             SNARG

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?

SEMI-TRUSTED For NP.



Bonus	Contribution:	Zero	Knowledge



Bonus	Contribution:	Zero	Knowledge
• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.



Bonus	Contribution:	Zero	Knowledge

• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.



Bonus	Contribution:	Zero	Knowledge

• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion  



Bonus	Contribution:	Zero	Knowledge

• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

• Add a commitment of 0 to the CRS.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion  



Bonus	Contribution:	Zero	Knowledge

• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

• Add a commitment of 0 to the CRS.

• Instead of sending the proof ∏ which we discussed before, the prover sends a NIZK/NIWI argument for the 
following NP statement: 

∏ is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion  



Bonus	Contribution:	Zero	Knowledge

• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

• Add a commitment of 0 to the CRS.

• Instead of sending the proof ∏ which we discussed before, the prover sends a NIZK/NIWI argument for the 
following NP statement: 

∏ is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

• Nothing changes in the real world. In the simulated world, we can switch the CRS to have a commitment of 1 and the 
NIZK/NIWI proof will not use ∏ at all.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion  



THANK	YOU!


