Non-Interactive Publicly-Verifiable Delegation of Committed Programs

Riddhi GhosalAmit SahaiBrent WatersUCLAUCLAUT Austin/NTT Research

Problem Setup

Input Provider

Goals

Goals

Non-Interactive Delegation	 Uni-directional Arrows No Back and Forth Communication 	
Public Verification	• Same proof ∏ for all verifiers	
Public Delegation	 No pre-processing specific to <i>P</i> before delegating to Worker No dependence of <i>H_P</i> on input <i>x</i> 	
Succinctness	• : poly (λ , log P , x) • Verifier run-time: poly (λ , log P , x) • Prover run-time: poly (λ , P , x)	

Interactive Schemes: • [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker

Interactive Schemes:	• [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker	
	Private Verification/Delegation	Public Delegation + Public Verification
Non-Interactive Schemes:	 [KP16]: LWE (Private Verification) [KRR13]: Subexp secure FHE (Private Verification) [GGP10]: FHE (Private Delegation) 	 [Mic00,BCC+17,Gro10,PR17]: Random Oracle/Non Standard Knowledge Assumptions [KPY19]: Standard Assumptions but verifier knows P

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Verifier does not know P. From Verifier's perspective, P is like an NP Witness

?

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Verifier does not know P. From Verifier's perspective, P is like an NP Witness

Seems intricately related to finding a solution to the "SNARG for NP" problem

?

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Verifier does not know P. From Verifier's perspective, P is like an NP Witness

Seems intricately related to finding a solution to the "SNARG for NP" problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

?

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Verifier does not know P. From Verifier's perspective, P is like an NP Witness

Seems intricately related to finding a solution to the "SNARG for NP" problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

?

Why has constructing a protocol that caters to the *fully non-interactive* setting which we have defined been so elusive?

Verifier does not know P. From Verifier's perspective, P is like an NP Witness

Seems intricately related to finding a solution to the "SNARG for NP" problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

Very recent work [CJJ21] comes the closest by achieving "SNARG for P from LWE"

Interactive Schemes:	•	[Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker		
		Private Verification/Delegation	I	Public Delegation + Public Verification
Non-Interactive Schemes:	•	[KP16]: LWE (Private Verification) [KRR13]: Subexp secure FHE (Private Verification) [GGP10]: FHE (Private Delegation)	•	[Mic00,BCC+17,Gro10,PR17]: Random Oracle/Non Standard Knowledge Assumptions [KPY19]: Standard Assumptions but verifier knows P

Interactive Schemes:	• [Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker		
	Private Verification/Delegation	Public Delegation + Public Verification	
Non-Interactive Schemes:	 [KP16]: LV [KRR13]: S (Private Venness) [GGP10]: FHE (Private Delegation) 	Interactive + Public tandard rifier does Verifier knows P	

Interactive Schemes:	•	[Kil92,KRR13,BKP18]: Standard Assumptions, Interaction with Worker		
		Private Verification/Delegation	F	Public Delegation + Public Verification
Non-Interactive Schemes:	•	[KP16]: LWE (Private Verification) [KRR13]: Subexp secure FHE (Private Verification) [GGP10]: FHE (Private Delegation)	•	[Mic00,BCC+17,Gro10,PR17]: Random Oracle/Non Standard Knowledge Assumptions [KPY19]: Standard Assumptions but verifier knows P Our Work: Standard Assumptions and Verifier does not know P

Can bypass the need of "SNARG for NP"

Can bypass the need of "SNARG for NP"

- Ideas from the "SNARG for P" can indeed be used
- Suffices for Alice to communicate a tiny amount of information about *P* to the Verifier
- Size of trusted $H_P = poly \log |P|$

Can bypass the need of "SNARG for NP"

- Ideas from the "SNARG for P" can indeed be used
- Suffices for Alice to communicate a tiny amount of information about *P* to the Verifier
- Size of trusted $H_P = poly \log |P|$

Main Theorem

Assuming the hardness of the LWE problem, there exists a construction for publicly verifiable non-interactive succinct delegation for committed programs with CRS size, proof size and verifier time poly(λ , log |P|, |x|) and prover run time being poly(λ , |P|, |x|).

Such a delegation scheme in the CRS model involves the following PPT algorithms:

- Setup(1^{λ}): Randomized setup algorithm that outputs crs
- ProgAuth(1^{λ} , crs): Randomized algorithm that outputs P, state, H_P
- Prover(crs, *P*, *state*, H_P , *x*): Deterministic algorithm that outputs a value *y* and proof \prod
- Verifier(crs, H_P , x, y, Π): Deterministic verifier which either accepts or rejects

Completeness

For all PPT ProgAuth, if *crs* is appropriately generated and Prover runs honestly then, $Pr[V(crs, H_P, x, y, \prod) = 1 \land P(x) = y] = 1$

Completeness

For all PPT ProgAuth, if *crs* is appropriately generated and Prover runs honestly then, $\Pr[V(crs, H_P, x, y, \prod) = 1 \land P(x) = y] = 1$

(E	Efficiency
	Setup runs in time $poly(\lambda)$	W runs in time $poly(\lambda, P , x)$
	Proof Size: $poly(\lambda, log P , x)$	V runs in time $poly(\lambda, log P , x)$

Completeness

For all PPT ProgAuth, if *crs* is appropriately generated and Prover runs honestly then, $Pr[V(crs, H_P, x, y, \Pi) = 1 \land P(x) = y] = 1$

	Efficiency
Setup runs in time $poly(\lambda)$	W runs in time $poly(\lambda, P , x)$
Proof Size: $poly(\lambda, log P , x)$	V runs in time $poly(\lambda, log P , x)$

Soundness

For all PPT adversaries (A_1, A_2) and all ProgAuth, if *crs* is appropriately generated and $(x, aux) \leftarrow A_1(crs)$, $(y, \prod) \leftarrow A_2(crs, P, H_P, x, aux)$, then

 $\Pr[V(crs, H_P, x, y, \prod) = 1 \land P(x) \neq y] \leq negl(\lambda)$

• Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.

• Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.

• P accepts x if P(x) = y within T steps.

• Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.

- P accepts x if P(x) = y within T steps.
- Let $h_0, h_1, h_2 \dots h_T$ be succinct encodings of the Turing Machine state and tape content during these T intermediate steps.

- Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.
- P accepts x if P(x) = y within T steps.
- Let h_0 , h_1 , h_2 ... h_T be succinct encodings of the Turing Machine state and tape content during these T intermediate steps.

- Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.
- P accepts x if P(x) = y within T steps.
- Let h_0 , h_1 , h_2 ... h_T be succinct encodings of the Turing Machine state and tape content during these T intermediate steps.

• If h_0 encodes the correct input x and h_T encodes an accepting state, then by CJJ21, we can construct a SNARG to prove that the computation was performed honestly.

- Consider the execution of *P* as a deterministic Turing Machine computation on input *x*.
- P accepts x if P(x) = y within T steps.
- Let $h_0, h_1, h_2 \dots h_T$ be succinct encodings of the Turing Machine state and tape content during these T intermediate steps.

• If h_0 encodes the correct input x and h_T encodes an accepting state, then by CJJ21, we can construct a SNARG to prove that the computation was performed honestly.

We do not know P

- Consider a Universal Turing Machine TM which takes (P, x, y) as input
- TM accepts in $T' = O(|P| \log |P|)$ steps if P(x) = y

- Consider a Universal Turing Machine TM which takes (P, x, y) as input
- TM accepts in $T' = O(|P| \log |P|)$ steps if P(x) = y
- Consider *TM* has three tapes: 3 read only input tapes for *P*, *x* and *y*, and one work tape.

- Consider a Universal Turing Machine TM which takes (P, x, y) as input
- TM accepts in $T' = O(|P| \log |P|)$ steps if P(x) = y
- Consider *TM* has three tapes: 3 read only input tapes for *P*, *x* and *y*, and one work tape.
- Let h_0 , h_1 , h_2 ... h_T , be the turing machine state and tape content during the T' intermediate steps.

- Consider a Universal Turing Machine TM which takes (P, x, y) as input
- TM accepts in $T' = O(|P| \log |P|)$ steps if P(x) = y
- Consider *TM* has three tapes: 3 read only input tapes for *P*, *x* and *y*, and one work tape.
- Let h_0 , h_1 , h_2 ... h_T , be the turing machine state and tape content during the T' intermediate steps.
- If h₀ encodes the correct inputs (P, x, y) and h_T, encodes an accepting state, then by CJJ21, we can construct SNARG to prove that the computation was performed honestly.

- Consider a Universal Turing Machine TM which takes (P, x, y) as input
- TM accepts in $T' = O(|P| \log |P|)$ steps if P(x) = y
- Consider *TM* has three tapes: 3 read only input tapes for *P*, *x* and *y*, and one work tape.
- Let h_0 , h_1 , h_2 ... h_T , be the turing machine state and tape content during the T' intermediate steps.
- If h₀ encodes the correct inputs (P, x, y) and h_T, encodes an accepting state, then by CJJ21, we can construct SNARG to prove that the computation was performed honestly.

 Note h₀ contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if they have been correctly input to the TM.

 Note h₀ contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if they have been correctly input to the TM.

 Note h₀ contains succinct encodings of the inputs (P, x, y). Since (x, y) are publicly known, it can be easily verified if they have been correctly input to the TM.

• Hardcode succinct H_P to the verification circuit.

- Hardcode succinct H_P to the verification circuit.
- The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly generated H_P.

- Hardcode succinct H_P to the verification circuit.
- The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly generated H_P.

- Hardcode succinct H_P to the verification circuit.
- The verifier can now test if the encoding corresponding to *P* send by the Prover indeed matches the honestly generated *H*_{*P*}.
- If it does, then *TM* must have received the correct input *P*, otherwise the prover would break Collision Resistance of the hash function which generated *H*_{*P*}.

- Hardcode succinct H_P to the verification circuit.
- The verifier can now test if the encoding corresponding to *P* send by the Prover indeed matches the honestly generated *H*_{*P*}.
- If it does, then *TM* must have received the correct input *P*, otherwise the prover would break Collision Resistance of the hash function which generated *H*_{*P*}.
- Now, we can use the techniques from CJJ21 to construct a

SNARG

- Hardcode succinct H_P to the verification circuit.
- The verifier can now test if the encoding corresponding to *P* send by the Prover indeed matches the honestly generated *H*_{*P*}.
- If it does, then *TM* must have received the correct input *P*, otherwise the prover would break Collision Resistance of the hash function which generated *H*_{*P*}.
- Now, we can use the techniques from CJJ21 to construct a **SEMI-TRUSTED** SNARG For NP.

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

- We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
- The program author can send an Extractable Statistically Binding Commitment to H_P instead of sending it out in the open.

- We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
- The program author can send an Extractable Statistically Binding Commitment to H_P instead of sending it out in the open.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion

- We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
- The program author can send an Extractable Statistically Binding Commitment to H_P instead of sending it out in the open.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion

• Add a commitment of 0 to the CRS.

- We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
- The program author can send an Extractable Statistically Binding Commitment to H_P instead of sending it out in the open.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion

- Add a commitment of 0 to the CRS.
- Instead of sending the proof ∏ which we discussed before, the prover sends a NIZK/NIWI argument for the following NP statement:

 \prod is a valid proof for the verification circuit **OR** the CRS contains a commitment to 1.

- We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
- The program author can send an Extractable Statistically Binding Commitment to H_P instead of sending it out in the open.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion

- Add a commitment of 0 to the CRS.
- Instead of sending the proof ∏ which we discussed before, the prover sends a NIZK/NIWI argument for the following NP statement:

 \prod is a valid proof for the verification circuit **OR** the CRS contains a commitment to 1.

 Nothing changes in the real world. In the simulated world, we can switch the CRS to have a commitment of 1 and the NIZK/NIWI proof will not use ∏ at all. **THANK YOU!**