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P(x), I

e Uni-directional Arrows
e No Back and Forth Communication

e Same proof TT for all verifiers

e No pre-processing specific to P before delegating to Worker
e No dependence of Hp on input x

* |TT[: poly (4,log [P], |x|)
e Verifier run-time: poly (4,log |P|, |x|)
e Prover run-time: poly (4, |P], |x])
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o interactive setting which we have defined been so elusive?

Verifier does not know P. From Verifier’s perspective, P is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

Very recent work [CJJ21] comes the closest by achieving “SNARG for P from LWE”
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* |deas from the “SNARG for P” can indeed be used
e Suffices for Alice to communicate a tiny amount of information about P to the Verifier
* Size of trusted Hp = poly log |P|
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Assuming the hardness of the L\WE problem, there exists a construction
Main Theorem for publicly verifiable non-interactive succinct delegation for committed

programs with CRS size, proof size and verifier time poly(A, log [P/, |x])
and prover run time being poly(A, [P/, |x]).




Publicly Verifiable Non-Interactive Succinct Delegation

Such a delegation scheme in the CRS model involves the following PPT algorithms:

Setup(1%): Randomized setup algorithm that outputs crs

ProgAuth(14, crs): Randomized algorithm that outputs P, state, Hp

Prover(crs, P, state, Hp, x): Deterministic algorithm that outputs a value y and proof ]

Verifier(crs, Hp, x, y,TT): Deterministic verifier which either accepts or rejects
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4 Completeness I

For all PPT ProgAuth, if crs is appropriately generated and Prover runs honestly then,
Pr[V(CTS»HP;x;)’;H) =1 /\P(.X') = y] =1

Efficiency

Setup runs in time poly(4) W runs in time poly(4, |P|, |x])
Proof Size: poly(A, log |P|, |x|) V runs in time poly(4, log |P]|, |x|)

/ Soundness \

For all PPT adversaries (4;, A,) and all ProgAuth, if crs is appropriately generated and (x, aux) « A, (crs),
(v, 1) « A,(crs, P, Hp, x, aux), then

Pr(V(crs,Hp,x,y,TT) = 1 A P(x) # y] < negl(A)
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* If hy encodes the correct input x and hy encodes an accepting state, then by CJJ21, we can
construct a SNARG to prove that the computation was performed honestly.

We do not know P
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* Let hgy, hy, h, ... hp, be the turing machine state and tape content during the T’ intermediate steps.
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* If hy encodes the correct inluts (P, x,y) and hy, encodes an accepting state, then by CJJ21, we can construct SNARG

to prove that the computatﬁm was performed honestly.
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Remember
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= Hp? hy: poly(4)

Vs

e Hardcode succinct Hp to the verification circuit.

\

"« The verifier can now test if the encoding corresponding to P send by the Prover indeed matches the honestly
generated Hp.

o Ifit does, then TM must have received the correct input P, otherwise the prover would break Collision Resistance of
the hash function which generated Hp.

Vs

* Now, we can use the techniques from CJJ21 to construct a SEMI-TRUSTED SNARG For NP.

\
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* We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.
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* The program author can send an Extractable Statistically Binding Commitment to Hp instead of sending it out in the
open.

[ Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion J

[- Add a commitment of O to the CRS. ]

* Instead of sending the proof [[ which we discussed before, the prover sends a NIZK/NIWI argument for the
following NP statement:

[1is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

\_ J

* Nothing changes in the real world. In the simulated world, we can switch the CRS to have a commitment of 1 and the
NIZK/NIWI proof will not use [] at all.
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