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Goals

• Uni-directional Arrows
• No Back and Forth CommunicationNon-Interactive Delegation

• Same proof ∏ for all verifiersPublic Verification

• No pre-processing specific to 𝑃 before delegating to Worker
• No dependence of 𝐻! on input 𝑥Public Delegation

• |∏|: poly (𝜆, log |𝑃| , |𝑥|)
• Verifier run-time: poly (𝜆, log |𝑃| , |𝑥|)
• Prover run-time: poly (𝜆, |𝑃|, |𝑥|)

Succinctness

HP

𝑃

𝑃, state

𝑥
𝑥
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Verification)
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The	SNARGS	for	NP	barrier

Why has constructing a protocol that caters to the fully non-
interactive setting which we have defined been so elusive?

Verifier does not know 𝑃. From Verifier’s perspective, 𝑃 is like an NP Witness

Seems intricately related to finding a solution to the “SNARG for NP” problem

Only solutions known in the Random Oracle Model or using non-standard knowledge assumptions

Solutions from standard assumptions has been open for over a decade

Very recent work [CJJ21] comes the closest by achieving “SNARG for P from LWE” 
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Our	Contribution

• Ideas from the “SNARG for P” can indeed be used 
• Suffices for Alice to communicate a tiny amount of information about 𝑃 to the Verifier
• Size of trustedH! = poly log |P|

Can bypass the need of “SNARG for NP”

Assuming the hardness of the LWE problem, there exists a construction 
for publicly verifiable non-interactive succinct delegation for committed 
programs with CRS size, proof size and verifier time poly(λ, log |P|, |x|) 
and prover run time being poly(λ, |P|, |x|).

Main Theorem



Publicly	Verifiable	Non-Interactive	Succinct	Delegation

Such a delegation scheme in the CRS model involves the following PPT algorithms:

• Setup(1𝜆): Randomized setup algorithm that outputs crs
• ProgAuth(1𝜆, 𝑐𝑟𝑠): Randomized algorithm that outputs 𝑃, 𝑠𝑡𝑎𝑡𝑒, 𝐻"
• Prover(crs, 𝑃, 𝑠𝑡𝑎𝑡𝑒, 𝐻", 𝑥): Deterministic algorithm that outputs a value 𝑦 and proof ∏
• Verifier(crs, 𝐻", 𝑥, 𝑦,∏): Deterministic verifier which either accepts or rejects
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Soundness

For all PPT adversaries (𝐴", 𝐴#) and all ProgAuth, if 𝑐𝑟𝑠 is appropriately generated and x, aux ← 𝐴" 𝑐𝑟𝑠 ,
y,∏ ← 𝐴# 𝑐𝑟𝑠, 𝑃, 𝐻! , 𝑥, 𝑎𝑢𝑥 , then

Pr 𝑉 𝑐𝑟𝑠, 𝐻! , 𝑥, 𝑦,∏ = 1 ∧ 𝑃 𝑥 ≠ 𝑦 ≤ 𝑛𝑒𝑔𝑙(𝜆)
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Construction:	Brief	Technical	Details

Remember 
HP?

• Hardcode succinct 𝐻! to the verification circuit. 

• The verifier can now test if the encoding corresponding to 𝑃 send by the Prover indeed matches the honestly 
generated 𝐻!.

• If it does, then 𝑇𝑀 must have received the correct input 𝑃, otherwise the prover would break Collision Resistance of 
the hash function which generated 𝐻!.

• Now, we can use the techniques from CJJ21 to construct a                             SNARG

……… ………………

ℎ$: poly(𝜆)

P 𝑥 y

= 𝐻L?

SEMI-TRUSTED For NP.
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• The program author can send an Extractable Statistically Binding Commitment to 𝐻! instead of sending it out in the 
open. 

• We give a generic transformation to convert any delegation scheme of this type to achieve zero-knowledge.

• Add a commitment of 0 to the CRS.

• Instead of sending the proof ∏ which we discussed before, the prover sends a NIZK/NIWI argument for the 
following NP statement: 

∏ is a valid proof for the verification circuit OR the CRS contains a commitment to 1.

• Nothing changes in the real world. In the simulated world, we can switch the CRS to have a commitment of 1 and the 
NIZK/NIWI proof will not use ∏ at all.

Get ZK by a standard CRS appending trick and a NIZK/NIWI proof in a modular fashion  
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