
EKE Meets Tight Security in the
Universally Composable Framework

PKC 2023

Xiangyu Liu, Shengli Liu, Shuai Han, Dawu Gu
Shanghai Jiao Tong University

May 9, 2023

2

PAKE

• Password (pw) is short and human-memorable

• No (complicated) cryptographic keys

𝑚!

𝑘" 𝑘#

𝑚$

…
⇓ ⇓

Client Server
(pw) (pw)

Ø PAKE: password-based authenticated key exchange

3

Asymmetric PAKE (aPAKE)

• Password file: a hash value of pw (e.g., 𝐻(pw))

• Prevent Adversary (with file) from impersonating Client to log in Server

𝒜

password file stealing
𝑚!

𝑘" 𝑘#

𝑚$

…
⇓ ⇓

Client Server
(pw) (file)

potential attacks:

4

Universally Composable (UC) framework

C S

Public
parameters

𝒜

𝒵

Protocol Π

C S...(1) (2) (1) (2)

Sim

𝒵

Public
parameters

ℱ

C SC S...(1) (2) (1) (2)

Ideal functionality

Real world: Ideal world:

≈

5

Universally Composable (UC) framework

C S

Public
parameters

𝒜

𝒵

Protocol Π

C S...(1) (2) (1) (2)

Sim

𝒵

Public
parameters

ℱ

C SC S...(1) (2) (1) (2)

Ideal functionality

Real world: Ideal world:

Advantages of UC security model:
• Arbitrary correlation and distributions for pw
• Universal composition theorem is appliable

(security preserves even running in arbitrary networks)

≈

6

Provable security: reduction

Security loss factor: 𝐿 = !
!"

Tight security: 𝐿 = 𝑂(1) or 𝐿 = Poly(λ)
Loose security: 𝐿 depends on 𝒜’s behaviors

Problem P Scheme S

Adversary 𝒜 breaks S
with advantage 𝜖

reduction algorithm ℬ solves P
with advantage 𝜖%

ℬ 𝒜

construct ℬ

𝑇𝑖𝑚𝑒(ℬ) ≈ 𝑇𝑖𝑚𝑒(𝒜)

7

Advantages of tight security

Hybrid argument:

------ Cost of huge security loss!! (as high as 𝟐𝟑𝟎~𝟐𝟓𝟎)

security in the single
user/session setting

security in the multi-
user/session setting

8

Advantages of tight security

Hybrid argument:

------ Cost of huge security loss!! (as high as 𝟐𝟑𝟎~𝟐𝟓𝟎)

Tight security

ü universal parameters
ü smaller parameters (under the same

security level)

security in the single
user/session setting

security in the multi-
user/session setting

9

Related works

Only 2 related works about tightly secure (a)PAKE
• [BIO+17]：IND model (weaker than UC model), Gap DH assumption,

PAKE protocol
• [ABB+20]：relaxed UC model, Gap DH assumption, PAKE protocol

[BIO+17] Becerra, J., Iovino, V., Ostrev, D., Sala, P., Skrobot, M.: Tightly-secure PAK(E).
[ABB+20] Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally composable relaxed password
authenticated key exchange.

Gap DH assumption (non-standard interactive assumption):

------ Given 𝑔, 𝑔& , 𝑔' and a decisional oracle for DDH tuples,

computing 𝑔&' is hard

10

Related works

Only 2 related works about tightly secure (a)PAKE
• [BIO+17]：IND model (weaker than UC model), Gap DH assumption,

PAKE protocol
• [ABB+20]：relaxed UC model, Gap DH assumption, PAKE protocol

[BIO+17] Becerra, J., Iovino, V., Ostrev, D., Sala, P., Skrobot, M.: Tightly-secure PAK(E).
[ABB+20] Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally composable relaxed password
authenticated key exchange.

Gap DH assumption (non-standard interactive assumption):

------ Given 𝑔, 𝑔& , 𝑔' and a decisional oracle for DDH tuples,

computing 𝑔&' is hard

(a)PAKE protocols with tight security in UC framework,
from standard hardness assumptions?

11

Contributions

l 2DH-EKE protocol (PAKE)

------ based on CDH assumption, tight UC security

l Negative result for the tight security of aPAKE

------ lower bound: 𝑁 (total number of “Client-Server” pairs)

l 2DH-aEKE protocol (aPAKE)

------ based on CDH assumption, UC security, optimal security loss 𝑁

12

EKE (Encrypted Key Exchange) protocol

𝑒!

𝑘" = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍 = 𝑔&')

𝑒$

Client Server
(pw) (pw)

𝑥 ← 𝕫(𝑦 ← 𝕫(
𝑒! ← E!(pw, 𝑋 = 𝑔&) 𝑒$ ← E$(pw, 𝑌 = 𝑔')

𝑘# = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍 = 𝑔&')

Reduction algorithm ℬ : randomize the CDH/DDH challenge problem, and embed
them into multiple session instances (random self-reducibility of the DH problem)

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks.

13

EKE (Encrypted Key Exchange) protocol

𝑒!

𝑘" = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍 = 𝑔&')

𝑒$

Client Server
(pw) (pw)

𝑥 ← 𝕫(𝑦 ← 𝕫(
𝑒! ← E!(pw, 𝑋 = 𝑔&) 𝑒$ ← E$(pw, 𝑌 = 𝑔')

𝑘# = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍 = 𝑔&')

Obstacles:
1. If 𝒜 attacks successfully (computes 𝑍 correctly and queries 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍)),

how can ℬ extract the correct CDH value?
2. If 𝒜 guesses pw correctly (hence can compute key), how can ℬ do?

Reduction algorithm ℬ : randomize the CDH/DDH challenge problem, and embed
them into multiple session instances (random self-reducibility of the DH problem)

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks.

14

2DH decisional oracle

Strong Twin DH (st2DH) assumption：
• Given (𝑔&! , 𝑔&" , 𝑔') and decisional oracle 2DH(D,D,D), computing (𝑔&!' , 𝑔&"') is hard

• 2DH(D,D,D) inputs 𝑔'# , 𝑔)! , 𝑔)" , outputs whether (𝑥!𝑦% = 𝑧!) ∧ (𝑥$𝑦% = 𝑧$)

[CKS08] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.

[CKS08]：st2DH assumption CDH assumption

15

Idea: 2DH-EKE protocol

𝑒!

𝑘" = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"')

𝑒$

Client Server
(pw) (pw)

𝑥!, 𝑥$ ← 𝕫(𝑦 ← 𝕫(
𝑒! ← E!(pw, 𝑋! = 𝑔&! , 𝑋$ = 𝑔&") 𝑒$ ← E$(pw, 𝑌 = 𝑔')

𝑘# = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"')

Solve the two obstacles:
1. If 𝒜 attacks successfully (computes 𝑍 correctly and queries𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍)), how
can ℬ extract the correct CDH value?

------ locate the correct 𝑍!, 𝑍$ via checking 2DH 𝑌, 𝑍!, 𝑍$ == 1?
2. If 𝒜 guesses pw correctly (hence can compute key), how can ℬ do?

------ 2DH(D,D,D) and the simulation of RO, keep 𝒜’s view consistent.

16

Towards UC: ideal ciphers

Using ideal ciphers to achieve UC security:

ü Simulate transcripts 𝑒!, 𝑒$ without pw

ü Deduce the password guess (pw’) in 𝒜’s mind from IC list:

• correct guess: honest execution and real session key

• wrong guess: random key (security relies on st2DH assumption)

𝑒!

𝑘" = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"')

𝑒$

Client Server
(pw) (pw)

𝑥!, 𝑥$ ← 𝕫(𝑦 ← 𝕫(
𝑒! ← E!(pw, 𝑋! = 𝑔&! , 𝑋$ = 𝑔&") 𝑒$ ← E$(pw, 𝑌 = 𝑔')

𝑘# = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"')

17

aPAKE: additional computation

MAC 𝜎: achieve perfect forward security

𝑒!

𝑒$

Client Server
(pw) (file)

𝑥!, 𝑥$ ← 𝕫(
𝑦 ← 𝕫(

𝑒! ← E!(h, 𝑋! = 𝑔&! , 𝑋$ = 𝑔&")
𝑒$ ← E$(h, 𝑌 = 𝑔')

(𝑘#, 𝜎′) = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍!, 𝑍$, 𝑍*, 𝑍+, h)

𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"', 𝑍* = 𝑔,!' , 𝑍+ = 𝑔,"'

(𝑘" , 𝜎) = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍!, 𝑍$, 𝑍*, 𝑍+, h)

Lile = (h, 𝑉! = 𝑔,! , 𝑉$ = 𝑔,")

h, 𝑣!, 𝑣$ ← 𝐻-(pw)

𝜎
𝜎 = 𝜎%?

2DH-aEKE protocol:

18

aPAKE: additional computation

MAC 𝜎: achieve perfect forward security

𝑒!

𝑒$

Client Server
(pw) (file)

𝑥!, 𝑥$ ← 𝕫(
𝑦 ← 𝕫(

𝑒! ← E!(h, 𝑋! = 𝑔&! , 𝑋$ = 𝑔&")
𝑒$ ← E$(h, 𝑌 = 𝑔')

(𝑘#, 𝜎′) = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍!, 𝑍$, 𝑍*, 𝑍+, h)

𝑍! = 𝑔&!' , 𝑍$ = 𝑔&"', 𝑍* = 𝑔,!' , 𝑍+ = 𝑔,"'

(𝑘" , 𝜎) = 𝐻(𝑡𝑟𝑎𝑛𝑠, 𝑍!, 𝑍$, 𝑍*, 𝑍+, h)

Lile = (h, 𝑉! = 𝑔,! , 𝑉$ = 𝑔,")

ℎ, 𝑣!, 𝑣$ ← 𝐻-(pw)

𝜎
𝜎 = 𝜎%?

2DH-aEKE protocol:

Optimal security loss for aPAKE

For aPAKE, simple reductions have an optimal security loss 𝑵
(total number of “Client-Server” pairs).

Simple reduction: invoke Adversary only once

19

Conclusion

l 2DH-EKE protocol (PAKE)
------ based on CDH assumption, tight UC security

l Negative result for the tight security of aPAKE
------ lower bound: 𝑁 (total number of “Client-Server” pairs)

l 2DH-aEKE protocol (aPAKE)
------ based on CDH assumption, UC security, optimal security loss 𝑁

20

Conclusion

Thank you!
Xiangyu Liu (xiangyu1994liu@gmail.com)

l 2DH-EKE protocol (PAKE)
------ based on CDH assumption, tight UC security

l Negative result for the tight security of aPAKE
------ lower bound: 𝑁 (total number of “Client-Server” pairs)

l 2DH-aEKE protocol (aPAKE)
------ based on CDH assumption, UC security, optimal security loss 𝑁

