
Laconic Function Evaluation for Turing Machines

Nico Döttling 1 Phillip Gajland 2,3 Giulio Malavolta 2

1 CISPA Helmholtz Center for Information Security
2 Max Planck Institute for Security and Privacy
3 Ruhr-University Bochum

PKC 2023: 26th International Conference on Theory and Practice of Public Key Cryptography, Atlanta, USA

outline

▶ Laconic function evaluation and applications

▶ Prior work and problem statement

▶ Our results and new applications

2

laconic function evaluation

laconic function evaluation [QWW18]

d← Cmp(f)
c← Enc(d, x)

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Correctness:
▶ Dec(f , c) = f(x)

Efficiency:
▶ Bob’s work is small

Security:
▶ c hides x - only reveals f(x)

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Correctness:
▶ Dec(f , c) = f(x)

Efficiency:
▶ Bob’s work is small

Security:
▶ c hides x - only reveals f(x)

4

laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Correctness:
▶ Dec(f , c) = f(x)

Efficiency:
▶ Bob’s work is small

Security:
▶ c hides x - only reveals f(x)

4

applications

application: succinct 2-party computation

xA xB

f

f(xA, xB)

Security:

▶ Alice only learns f(xA, xB) and Bob doesn’t learn anything

Efficiency:

▶ Communication + computation ≪ computing f(xA, xB)

6

application: succinct 2-party computation

xA xB

f

f(xA, xB)

Security:

▶ Alice only learns f(xA, xB) and Bob doesn’t learn anything

Efficiency:

▶ Communication + computation ≪ computing f(xA, xB)

6

application: succinct 2-party computation

xA xB

f

f(xA, xB)

Security:

▶ Alice only learns f(xA, xB) and Bob doesn’t learn anything

Efficiency:

▶ Communication + computation ≪ computing f(xA, xB)

6

application: succinct 2-party computation

xA xB

f

f(xA, xB)

Security:

▶ Alice only learns f(xA, xB) and Bob doesn’t learn anything

Efficiency:

▶ Communication + computation ≪ computing f(xA, xB)
6

succinct 2-pc: alice-optimised protocol via fhe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)

7

succinct 2-pc: alice-optimised protocol via fhe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)

7

succinct 2-pc: alice-optimised protocol via fhe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)

7

succinct 2-pc: bob-optimised protocol via function hiding lfe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)

7

succinct 2-pc: bob-optimised protocol via function hiding lfe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)

7

applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]

8

applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]

8

applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]

8

applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]

8

applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]

8

prior work

previous constructions

[QWW18] First construction of LFE from LWE

[PCFT20] Generalisations and construction from iO

[Ros22] Stronger security for specific class of circuits

∨

∧

∨

x0 x1

¬

x2

∧

∧

x3 x4

¬

x5

Problem: Ciphertext (and runtime of Enc) grow polynomially with depth of circuit

Think of: “Leveled” FHE vs. “pure” FHE

10

previous constructions

[QWW18] First construction of LFE from LWE

[PCFT20] Generalisations and construction from iO

[Ros22] Stronger security for specific class of circuits

∨

∧

∨

x0 x1

¬

x2

∧

∧

x3 x4

¬

x5

Problem: Ciphertext (and runtime of Enc) grow polynomially with depth of circuit

Think of: “Leveled” FHE vs. “pure” FHE

10

previous constructions

[QWW18] First construction of LFE from LWE

[PCFT20] Generalisations and construction from iO

[Ros22] Stronger security for specific class of circuits

∨

∧

∨

x0 x1

¬

x2

∧

∧

x3 x4

¬

x5

Problem: Ciphertext (and runtime of Enc) grow polynomially with depth of circuit

Think of: “Leveled” FHE vs. “pure” FHE

10

previous constructions

[QWW18] First construction of LFE from LWE

[PCFT20] Generalisations and construction from iO

[Ros22] Stronger security for specific class of circuits

∨

∧

∨

x0 x1

¬

x2

∧

∧

x3 x4

¬

x5

Problem: Ciphertext (and runtime of Enc) grow polynomially with depth of circuit

Think of: “Leveled” FHE vs. “pure” FHE

10

problem statement

“Is it possible to construct LFE where the size of the ciphertext
and the runtime of Enc are independent of the circuit depth?”

11

contributions

main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)

13

main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

13

main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

13

main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

13

main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

13

construction

building blocks

Indistinguishability Obfuscation

C0(x) = C1(x) =⇒ iO(C0)(x) ≈ iO(C1)(x)

Updatable Laconic Oblivious Transfer

d← ULOT.Hash(D)
d

c← ULOT.Send (d, L, {m0, m1})
c

mD[L] ← ULOT.Receive(L, c)

15

building blocks

Indistinguishability Obfuscation

C0(x) = C1(x) =⇒ iO(C0)(x) ≈ iO(C1)(x)

Updatable Laconic Oblivious Transfer

d← ULOT.Hash(D)
d

c← ULOT.Send (d, L, {m0, m1})
c

mD[L] ← ULOT.Receive(L, c)

15

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]

16

new applications

▶ Using the work of [KNYY19] we get NIZKs with optimal prover complexity

▶ Witness encryption [GGSW13] where |c| depends only on |w| and λ

▶ First ABE for Turing machines [GKP+13] from falsifiable assumptions

17

new applications

▶ Using the work of [KNYY19] we get NIZKs with optimal prover complexity

▶ Witness encryption [GGSW13] where |c| depends only on |w| and λ

▶ First ABE for Turing machines [GKP+13] from falsifiable assumptions

17

new applications

▶ Using the work of [KNYY19] we get NIZKs with optimal prover complexity

▶ Witness encryption [GGSW13] where |c| depends only on |w| and λ

▶ First ABE for Turing machines [GKP+13] from falsifiable assumptions

17

conclusion

summary

Contributions:

▶ Asymptotically optimal Laconic Function Evaluation for Turing machines
▶ New applications:

▶ NIZK with optimal prover complexity
▶ WE and ABE for Turing machines from falsifiable assumptions

� ia.cr/2023/502

phillip.gajland@{mpi-sp.org,rub.de}
� p4i11ip

19

https://ia.cr/2023/502
mailto:phillip.gajland@mpi-sp.org,phillip.gajland@rub.de
https://twitter.com/p4i11ip

summary

Contributions:

▶ Asymptotically optimal Laconic Function Evaluation for Turing machines
▶ New applications:

▶ NIZK with optimal prover complexity
▶ WE and ABE for Turing machines from falsifiable assumptions

� ia.cr/2023/502

phillip.gajland@{mpi-sp.org,rub.de}
� p4i11ip

19

https://ia.cr/2023/502
mailto:phillip.gajland@mpi-sp.org,phillip.gajland@rub.de
https://twitter.com/p4i11ip

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 500–532, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous IBE, leakage resilience and
circular security from new assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in Computer Science, pages 535–564, Tel
Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublinear communication complexity.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part II,
volume 11693 of Lecture Notes in Computer Science, pages 30–60, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany.

[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in
Computer Science, pages 372–408, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman assumption. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture
Notes in Computer Science, pages 537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.

[DGGM19] Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic conditional disclosure of secrets and
applications. In David Zuckerman, editor, 60th Annual Symposium on Foundations of Computer Science, pages
661–685, Baltimore, MD, USA, November 9–12, 2019. IEEE Computer Society Press.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. Trapdoor hash
functions and their applications. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology

– CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 3–32, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Heidelberg, Germany.

20

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 467–476, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[GH18] Sanjam Garg and Mohammad Hajiabadi. Trapdoor functions from the computational Diffie-Hellman assumption.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, volume
10992 of Lecture Notes in Computer Science, pages 362–391, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. How to
run turing machines on encrypted data. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear maps. In Chris
Umans, editor, 58th Annual Symposium on Foundations of Computer Science, pages 588–599, Berkeley, CA, USA,
October 15–17, 2017. IEEE Computer Society Press.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near optimal online complexity. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume
10821 of Lecture Notes in Computer Science, pages 535–565, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

[GS18b] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for turing machines. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240 of Lecture
Notes in Computer Science, pages 425–454, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

[GS18c] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from minimal assumptions.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 468–499, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

21

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring constructions of compact
NIZKs from various assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 639–669, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[PCFT20] Bo Pang, Long Chen, Xiong Fan, and Qiang Tang. Multi-input laconic function evaluation. In Joseph K. Liu
and Hui Cui, editors, ACISP 20: 25th Australasian Conference on Information Security and Privacy, volume 12248
of Lecture Notes in Computer Science, pages 369–388, Perth, WA, Australia, November 30 – December 2, 2020.
Springer, Heidelberg, Germany.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel Thorup,
editor, 59th Annual Symposium on Foundations of Computer Science, pages 859–870, Paris, France, October 7–9,
2018. IEEE Computer Society Press.

[QWW20] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation.
https://www.youtube.com/watch?v=sZ7US6yKD-I, 2020.

[Ros22] Razvan Rosie. Adaptively secure laconic function evaluation for NC1. In Steven D. Galbraith, editor, Topics in
Cryptology – CT-RSA 2022, volume 13161 of Lecture Notes in Computer Science, pages 427–450, Virtual Event,
March 1–2, 2022. Springer, Heidelberg, Germany.

22

https://www.youtube.com/watch?v=sZ7US6yKD-I

	Laconic Function Evaluation
	Applications
	Prior Work
	Contributions
	Construction
	Conclusion
	References

