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▶ Laconic function evaluation and applications

▶ Prior work and problem statement

▶ Our results and new applications
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laconic function evaluation



laconic function evaluation [QWW18]

d← Cmp(f)
c← Enc(d, x)

f(x)← Dec(f , c)

³ I

Alice’s digest:
▶ Depends on f

▶ Is short (Bob has to read it)

Bob’s ciphertext:
▶ Hides x (not f(x))
▶ Efficient to compute
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laconic function evaluation [QWW18]

d← Cmp(f) d

c← Enc(d, x)
c

f(x)← Dec(f , c)

³ I

Correctness:
▶ Dec(f , c) = f(x)

Efficiency:
▶ Bob’s work is small

Security:
▶ c hides x - only reveals f(x)
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applications



application: succinct 2-party computation

xA xB

f

f(xA, xB)

Security:

▶ Alice only learns f(xA, xB) and Bob doesn’t learn anything

Efficiency:

▶ Communication + computation ≪ computing f(xA, xB)
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succinct 2-pc: alice-optimised protocol via fhe

c← Enc(xA)

c c′ ← Eval(fB, c)
fB(xA) = f(xA, xB)

c′

f(xA, xB) = Dec(c′)

d← Cmp(fA; r) d
c← Enc(d, xB)

c
f(xA, xB) = Dec(r, fA, c)
fA(xB) = f(xA, xB)
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succinct 2-pc: bob-optimised protocol via function hiding lfe
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applications

Direct applications:

▶ MPC with low online computation [QWW18]
▶ Adaptively secure MPC with sublinear communication complexity [CsW19]
▶ Compact NIZKs from various assumptions [KNYY19]

Techniques used for laconic cryptography have led to:

▶ Laconic Conditional Disclosure of Secrets [DGGM19]
▶ Single-server private-information retrieval from weaker assumptions [DGI+19]
▶ Identity-based encryption from weaker assumptions [DG17a, DG17b, BLSV18]
▶ Two-round MPC from minimal assumptions [GS17, GS18c, BL18]
▶ Adaptively secure garbled circuits from weaker assumptions [GS18a]
▶ Trapdoor functions from weaker assumptions [GH18]
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prior work



previous constructions

[QWW18] First construction of LFE from LWE

[PCFT20] Generalisations and construction from iO

[Ros22] Stronger security for specific class of circuits

∨

∧

∨

x0 x1

¬

x2

∧

∧

x3 x4

¬

x5

Problem: Ciphertext (and runtime of Enc) grow polynomially with depth of circuit

Think of: “Leveled” FHE vs. “pure” FHE
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problem statement

“Is it possible to construct LFE where the size of the ciphertext
and the runtime of Enc are independent of the circuit depth?”
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contributions



main result

Theorem (Informal)

iO + ULOT =⇒ LFE

▶ |d| = poly(λ)
▶ Enc = O(|x|) · poly(λ)
▶ |c| = O(|x|) · poly(λ)
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construction



building blocks

Indistinguishability Obfuscation

C0(x) = C1(x) =⇒ iO(C0)(x) ≈ iO(C1)(x)

Updatable Laconic Oblivious Transfer

d← ULOT.Hash(D)
d

c← ULOT.Send (d, L, {m0, m1})
c

mD[L] ← ULOT.Receive(L, c)
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construction: high-level overview

d← Cmp(f)

1 : d← ULOT.Hash(f) d

c← Enc(d, x)

1 : Obfuscate Step Circuit SC as

iO(SC)←Step Circuit SC

1 : Perform 1 step of the computation

2 : Write outputs to DB using ULOT.Send

2 : Encrypt input x

3 : c← (iO(SC), Sym.Enc(x))

c

f(x)← Dec(f , c)

1 : while i ̸= T

2 : Run obfuscated Step Circuit at i

3 : ULOT.Receive returns the inputs for iO(SCi+1)
4 : f(x)← last output from Step Circuit

▶ The proof follows from a pebbling strategy similar to [GS18b]
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new applications

▶ Using the work of [KNYY19] we get NIZKs with optimal prover complexity

▶ Witness encryption [GGSW13] where |c| depends only on |w| and λ

▶ First ABE for Turing machines [GKP+13] from falsifiable assumptions
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summary

Contributions:

▶ Asymptotically optimal Laconic Function Evaluation for Turing machines
▶ New applications:

▶ NIZK with optimal prover complexity
▶ WE and ABE for Turing machines from falsifiable assumptions
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