

Sender-Binding Key Encapsulation

Laurin Benz^{1,2} **Wasilij Beskorovajnov**³ Sarai Eilebrecht³ Jörn Müller-Quade^{1,2,3} Astrid Ottenhues^{1,2} Rebecca Schwerdt^{1,2}

¹Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²KASTEL Security Research Labs, Karlsruhe, Germany {laurin.benz, mueller-quade, ottenhues, schwerdt}@kit.edu

³FZI Research Center for Information Technology, Karlsruhe, Germany {beskorovajnov, eilebrecht}∂fzi.de

Preliminaries

- Universal Composability (UC) Framework [3]
- · Notions of
 - weak CCA for Tag-based encryption (TBE) or (tag-based) Key encapsulation mechanism (KEM)
 - IND-OT and (R)CCA Data encapsulation mechanism (DEM)
- · Hybrid PKE the KEM/DEM Paradigm, e.g. [7]

- · Only CCA2 secure PKE is not enough
 - · A Relay-Attack is still possible
 - · Authenticated channels are a requirement
- What is an authenticated channel? \rightarrow e.g. a secure signature scheme combined with a secure certification authority

CCA2 security is unncessarily strong ([4, 2, 11])

→ The non-malleability of information passing through an authenticated channel **overlaps** with the non-malleability of the employed IND-CCA2_{PKE} secure PKE.

3

This motivation was addressed recently in [2] by showing that a PKE does not to need to be stronger than **sender-binding CPA**.

What about hybrid encryption?

Related Work

Related Work on the KEM/DEM Paradigm

Relaxations considering only the DEM

- Shoup [13] showed: IND-CCA2_{KEM} + IND-CCA2_{DEM} yields an IND-CCA2_{PKE} secure PKE as a result.
- First relaxation in [6] to a one-time-IND-CCA2_{DEM} (sometimes called IND-OTCCA [7]).
- One main finding of Herranz, Hofheinz and Kiltz in [7] was that CCA2 security could so far only be reached via a CCA2 secure KEM in conjunction with IND-OTCCA DEM.
- Abe et al. [1] showed IND-CCA2_{tag-KEM} KEM + IND-OT_{DEM} DEM yields an IND-CCA2_{PKE} secure PKE as a result. (This work subsumes the Kurosawa-Desmedt-KEM + DEM from [10])

Related Work on the KEM/DEM Paradigm

Relaxations considering only the KEM

- · Constrained CCA from Hofheinz and Kiltz [8]
- Bounded CCA from Cramer et al. [5]
- · Detectable CCA from from Hohenberger et al. [9]
- Replayble CCA from Canetti et al. [4]

Related Work's Main Motivation

A CCA2 secure hybrid PKE \neq Our Motivation

Moreover, these works consider only the "Single Message Transfer" scenario (e.g., secure e-mail communication)

Related Work on KEMs and Secure Channels in Universal composability (UC)

Session communication scenario from KEMs by Nagao, Manabe and Okamoto [12] (e.g., SSL, IPSec, SSH)

 \rightarrow Is the CCA2_{KEM} security necessary?

Contribution

Contribution

We introduce two formal notions

· Sender-binding Key encapsulation mechanism (SB-KEM)

$$gen: 1^{\lambda} \mapsto (sk, pk), \quad enc: (pk, S) \mapsto (K, C), \quad dec: (sk, S, C) \mapsto K$$

 Indistinguishability under Sender-binding chosen plaintext attack (IND-SB-CPA) for SB-KEMs

Single Message Scenario

 $\begin{array}{c} \mathrm{SB\text{-}CPA} \ \mathrm{KEM} + \mathrm{OT} \ \mathrm{DEM} \\ \Rightarrow \mathrm{SB\text{-}CPA} \ \mathrm{SBE} \end{array}$

From [2] we may conclude that this encryption realizes a secure channel in a F_{AUTH} hybrid model.

Session Communication Scenario

We generalize and relax the results from Nagao, Manabe and Okamoto [12].

$$\pi_{ ext{MSC}}^{\mathcal{F}_{ ext{AUTH}}} \geq_{ ext{UC}} \mathcal{F}_{ ext{MSC}}$$

Intuition of IND-SB-CPA_{SB-KEM}

- IND-SB-CPA_{SB-KEM} requires
 - · non-malleability of the sender identity ightarrow decaps oracle $\mathcal{O}_{\mathsf{SB-CPA}}$
 - · semantic security of the message \rightarrow indistinguishability experiment
- The authenticated channel protects the rest

Definition of IND-SB-CPA_{SB-KEM}

Figure 1: The IND-SB-CPA_{SB-KEM} Game for SB-CPA_{SB-KEM}

How weak is IND-SB-CPA_{SB-KEM}?

Conclusion

Frequent Misunderstandings

- IND-SB-CPA_{SB-KEM} is **not** a replacement of CCA2
- IND-SB-CPA_{SB-KEM} is **not** limited to constructions in the standard model

Summary

Questions?

References i

M. Abe, R. Gennaro, K. Kurosawa, and V. Shoup.

Tag-kem/dem: A new framework for hybrid encryption and a new analysis of kurosawa-desmedt kem.

In R. Cramer, editor, *Advances in Cryptology – EUROCRYPT 2005*, pages 128–146, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

W. Beskorovajnov, R. Gröll, J. Müller-Quade, A. Ottenhues, and R. Schwerdt.

A new security notion for pkc in the standard model: Weaker, simpler, and still realizing secure channels.

In G. Hanaoka, J. Shikata, and Y. Watanabe, editors, *Public-Key Cryptography – PKC 2022*, pages 316–344, Cham, 2022. Springer International Publishing.

References ii

R. Canetti.

Universally composable security: A new paradigm for cryptographic protocols.

In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE, 2001.

R. Canetti, H. Krawczyk, and J. B. Nielsen.

Relaxing chosen-ciphertext security.

In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 565-582, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and V. Vaikuntanathan.

Bounded cca2-secure encryption.

In ASIACRYPT, volume 4833, pages 502–518. Springer, 2007.

References iii

R. Cramer and V. Shoup.

Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack.

SIAM Journal on Computing, 33, 01 2002.

J. Herranz, D. Hofheinz, and E. Kiltz. Some (in)sufficient conditions for secure hybrid encryption. *Inf. Comput.*, 208:1243–1257, 11 2010.

D. Hofheinz and F. Kiltz.

Secure hybrid encryption from weakened key encapsulation.

In Advances in Cryptology-CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings 27, pages 553-571. Springer, 2007.

References iv

S. Hohenberger, A. Lewko, and B. Waters.

Detecting dangerous queries: A new approach for chosen ciphertext security.

In Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pages 663–681. Springer, 2012.

K. Kurosawa and Y. Desmedt.

A new paradigm of hybrid encryption scheme.

In M. Franklin, editor, *Advances in Cryptology – CRYPTO 2004*, pages 426–442, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

References v

P. D. MacKenzie, M. K. Reiter, and K. Yang.

Alternatives to non-malleability: Definitions, constructions, and applications (extended abstract).

In M. Naor, editor, *TCC 2004*, volume 2951 of *LNCS*, pages 171–190. Springer Berlin Heidelberg, 2004.

W. Nagao, Y. Manabe, and T. Okamoto.

A universally composable secure channel based on the kem-dem framework.

volume 89-A, pages 28-38, 01 2006.

V. Shoup.

A proposal for an iso standard for public key encryption.

Cryptology ePrint Archive, Paper 2001/112, 2001.

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

