
Efficient and Universally Composable Single
Secret Leader Election from Pairings

Dario Catalano1, Dario Fiore1,2, Emanuele Giunta2

PKC’23

University of Catania, Italy.

IMDEA Software Institute, Madrid, Spain.

Universidad Politecnica de Madrid, Spain.

1



Consensus from Probabilistic Leader Election

Leader Election Consensus

g

gg

g

g g

g?

g?g

g?

g g

g

gg

g

g g
election protocol potential leaders

elected
tie breaker

 Issues: Potential forks and wasted effort.

2



Consensus from Probabilistic Leader Election

Probabilistic Secret
Leader Election

Consensus

g

gg

g

g g

g?

g?g

g?

g g

g

gg

g

g g
election protocol potential leaders

elected
tie breaker

 Issues: Potential forks and wasted effort.

2



Consensus from Probabilistic Leader Election

Probabilistic Secret
Leader Election

Consensus

g

gg

g

g g

g?

g?g

g?

g g

g

gg

g

g g
election protocol potential leaders

elected
tie breaker

 Issues: Potential forks and wasted effort.

2



Single Secret Leader Election

[BEHG20] proposed Single Secret Leader Election protocols (SSLE).

g

gg

g

g g

g

gg



g g

g

gg

g

g g
election protocol leader elected leader reveals

 Advantage: Harder to attack [AC21].
 Disadvantage: Less efficient than probabilistic elections.

3



Game-Based Definition

ggUniqueness: Each election can have at most
one leader.


Fairness: All users have the same probability of
winning an election.

?ggg
Unpredictability: No one can guess the leader
identity before she reveals better than randomly.

4



Universal Composability

Game-based security [BEHG20] may fail under composition.

We propose a stronger definition in the UC model [Can00].

g

gg

g

g g
Real Protocol

≈ g

gg

g

g g
Ideal Protocol

5



Universal Composability

Game-based security [BEHG20] may fail under composition.

We propose a stronger definition in the UC model [Can00].

g

gg

g

g g
Real Protocol

≈ g

gg

g

g g
Ideal Protocol

5



Previous Work

Based on Off-chain On-chain Security Corruption

[BEHG20] iO O(1) O(1) Game-Based* Static

[BEHG20] TFHE O(t) O(t) Game-Based Static

[BEHG20] DDH O(N) O(N) Game-Based Static

[CFG22] DDH O(N) O(N) UC Adaptive

[LOS22] DDH O(N) O(N) Game-Based Adaptive

[NNHP22] MPC O(N2) O(1) UC Adaptive

This Work SXDH O(N) O(log2 N) UC Static

6



Our Construction



Predicate Encryption for Keyword Search

A PEKS is a Functional Encryption scheme where a key sky allows
to test if a ciphertext encrypts y or not.

Dec(sky ,Enc(x)) =

1 if x = y

0 otherwise

Modular Keyword Search: sky reveals if x = y modulo n

Dec(sky ,Enc(x , n)) =

1 if x = y mod n

0 otherwise

7



Predicate Encryption for Keyword Search

A PEKS is a Functional Encryption scheme where a key sky allows
to test if a ciphertext encrypts y or not.

Dec(sky ,Enc(x)) =

1 if x = y

0 otherwise

Modular Keyword Search: sky reveals if x = y modulo n

Dec(sky ,Enc(x , n)) =

1 if x = y mod n

0 otherwise

7



High-level Construction

n: number of
registered users

g �
msk

Registration

skid, id

µ
(


)
�

µ(Enc(m, n))

m = m1 + . . .+mκ

0 ≤ mi < n

µ
(


)


threshold opening

g
skid

nzk

Electionif id = m mod n

8



Election: Committee Selection

Each election begin by publicly selecting a random committee of
κ users, which will produce a commitment to the challenge.

g
g

g

g
g g

g

g

g

Random
Beacon

g
m1

g
m2

g
m3

µ(Enc(m, n))

9



Election: Committee Selection

Each election begin by publicly selecting a random committee of
κ users, which will produce a commitment to the challenge.

g
g

g

g
g g

g

g

g

Random
Beacon

g
m1

g
m2

g
m3

µ(Enc(m, n))

9



Election: Committed Challenge Ciphertext

The encryption of (m, n) in our Modular KS has the following form

Enc(m, n) =
(
s · [a]1 , [σ · x]1 + s ·

[
a⊤W

]
1

)
Public-Key
Elements

Where x = (m,−1,−n) and σ, s ∈ Fq are random.

Main Challenge: computing [σ · x]1, which is non-linear in the
secrets

10



Election: Committed Challenge Ciphertext

The encryption of (m, n) in our Modular KS has the following form

Enc(m, n) =
(
s · [a]1 , [σ · x]1 + s ·

[
a⊤W

]
1

)
Public-Key
Elements

Where x = (m,−1,−n) and σ, s ∈ Fq are random.

Main Challenge: computing [σ · x]1, which is non-linear in the
secrets

10



Election: Committed Challenge Ciphertext

Solution: In the Random Oracle we generate the encryption of a
random ElGamal ciphertext (of secret key z).

µ (Enc(m, n)) =
(
x · [ρ]1 , s · [a]1 , x · [ρz + σ]1 + s ·

[
a⊤W

]
1

)
Public-Key
Elements

Random
ElGamal Ciphertext

Now the committed challenge is linear in the secrets x and s, and
can be computed in one round with synchronous communication.

11



Election: Threshold Decryption & Leadership Claim

For the threshold decryption we assume:

• Less than t ≤ n/2 corrupted users, i.e. honest majority

• Each party has zi , a t-share of z .

• (G1, z · G1) and ziG1 is public for all user Pi

Parties then broadcast their decryption share and a zero knowledge
proof to compute the challenge c .

The leader eventually claim victory by proving knowledge of skid

which correctly decrypts c .

12



High-level Construction

n: number of
registered users

g �
msk

Registration

skid, id

µ
(


)
�

µ(Enc(m, n))

m = m1 + . . .+mκ

0 ≤ mi < n

µ
(


)


threshold opening

g
skid

nzk

Electionif id = m mod n

13



Registration: Setup

At setup we select a committee which shares the secret z and
computes new party’s secret keys

gg
g

g

g
g g g

g

g

g
gg

Random
Beacon

g
W1, z1

g
W2, z2

g
W3, z3

g
W4, z4

W = W1 + . . .+W4

z = z1 + . . .+ z4

14



Registration: Secret Key Generation

The secret keys in our construction are of the form

skid =
(
[r · W y]1, [r ]1

)
Master

Secret Key

where y = (1, id, i) for 0 ≤ i < κ.

We remove the quadratic term on r and W by sampling [r ]1 with
the Random Oracle:

skid =
(

W y · [r ]1 , [r ]1

)
Master

Secret Key
Random

Oracle’s Output

15



Registration: Secret Key Generation

The secret keys in our construction are of the form

skid =
(
[r · W y]1, [r ]1

)
Master

Secret Key

where y = (1, id, i) for 0 ≤ i < κ.
We remove the quadratic term on r and W by sampling [r ]1 with
the Random Oracle:

skid =
(

W y · [r ]1 , [r ]1

)
Master

Secret Key
Random

Oracle’s Output

15



Conclusions



Comparisons

0

2

4

6

8

10

C
om

m
un

ic
at

io
n

(G
B
)

N-Shuffle
Our Work off-chain

0 40 80 120 160 200
0

15
30
45
60
75
90

Number of Elections

C
om

m
un

ic
at

io
n

(M
B
)

√
N-Shuffle

Our Work on-chain

0 40 80 120 160 200
Number of Elections

0 40 80 120 160 200
Number of Elections

16



Conclusion

We proposed a practical UC-secure SSLE achieving O(κ log n)

on-chain communication from standard pairing assumptions.

Open problems:

• Reducing the setup cost

• Achieving Adaptive Security

Thanks for your attention!

17


	Our Construction
	Conclusions

