Tracing a Linear Subspace

Application to Linearly-Homomorphic Group Signatures

Chloé Hébant ${ }^{1}$ David Pointcheval ${ }^{2} \quad$ Robert Schädlich ${ }^{2}$
May 8, 2023
${ }^{1}$ Cosmian, Paris, France
${ }^{2}$ DIENS, École normale supérieure, PSL University, CNRS, Inria, Paris, France
ńáa

Outline

1 Linearly-Homomorphic Group Signatures

- Definition
- Construction

2 A Core Technique: Tracing Linear Subspaces

- Trivial Solution
- Improved Efficiency via Code-Based Construction

Linearly-Homomorphic Group Signatures

Linearly-Homomorphic Group Signatures

Linearly-Homomorphic Group Signatures

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
Derive $\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
Verify $(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Linearly-Homomorphic Group Signatures
$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Security. EUF-CMA without trivial attacks

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \text { GKeyGen }\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \text { sk }_{1}, \ldots, \text { sk }_{n}\right) \\
& \text { GSign }\left(\text { sk }_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \operatorname{GKeyGen}\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \mathrm{sk}_{1}, \ldots, \text { sk }_{n}\right) \\
& \text { GSign }\left(\mathrm{sk}_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \text { GKeyGen }\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \text { sk }_{1}, \ldots, \text { sk }_{n}\right) \\
& \text { GSign }\left(\text { sk }_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \text { GKeyGen }\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \text { sk }_{1}, \ldots, \text { sk }_{n}\right) \\
& \text { GSign }\left(\text { sk }_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \text { GKeyGen }\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \mathrm{sk}_{1}, \ldots, \mathrm{sk}_{n}\right) \\
& \text { GSign }\left(\mathrm{sk}_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
$\operatorname{Sign}\left(\mathrm{sk}, \vec{m}_{i}\right) \rightarrow \sigma_{i}$
$\operatorname{Derive}\left(\mathrm{pk},\left(\omega_{i}, \vec{m}_{i}, \sigma_{i}\right)_{i}\right) \rightarrow \sigma$
$\operatorname{Verify}(\mathrm{pk}, \vec{m}, \sigma) \rightarrow 0 / 1$

Group Signatures

$$
\begin{aligned}
& \text { GKeyGen }\left(1^{\lambda}\right) \rightarrow\left(\text { gpk, gmsk, } \text { sk }_{1}, \ldots, \text { sk }_{n}\right) \\
& \text { GSign }\left(\text { sk }_{i}, m\right) \rightarrow \sigma \\
& \text { GVerify }(\text { gpk, } m, \sigma) \rightarrow 0 / 1 \\
& \text { Open }(\text { gmsk, } m, \sigma) \rightarrow i \in[n]
\end{aligned}
$$

Security. EUF-CMA without trivial attacks

Security. EUF-CMA without trivial attacks

Anonymity.

Traceability.

What Makes the Design Non-Trivial?

A Framework for Group Signatures [вмwo3]

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign($\mathrm{sk}_{1}, \stackrel{\text { —— }}{ }$)

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign($\left.\mathrm{sk}_{1}, \xlongequal{\underline{\underline{\square}}}\right)$

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign(sk_{1}, 三

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign(sk_{1}, 三$)$

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

III, $g m s k=($ Q

Signing. GSign(sk_{1}, 三$)$

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

आี่ $\operatorname{gmsk}=($ ด ()

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

A Framework for Group Signatures [вмwo3]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign(sk_{1}, 浔)

A Framework for Group Signatures [вмwоз]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign(sk_{1}, 浔)

आี่ $\operatorname{gmsk}=($ ด ()

A Framework for Group Signatures [вмwоз]

Ingredients.

- (traditional) signature
- public-key encryption
- NIZK for NP relations

Signing. GSign(sk_{1}, 三$)$

How to Make This Linearly Homomorphic?

How to Make This Linearly Homomorphic?

How to Make This Linearly Homomorphic?

homomorphic encryption (e.g. ElGamal)

How to Make This Linearly Homomorphic?

"Tracing" a Linear Subspace

"Tracing" a Linear Subspace

Given: - basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vector space $\mathbb{V}=\operatorname{span}(\mathcal{B})$

"Tracing" a Linear Subspace

Given: • basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vector space $\mathbb{V}=\operatorname{span}(\mathcal{B})$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}$

"Tracing" a Linear Subspace

Given: - basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vector space $\mathbb{V}=\operatorname{span}(\mathcal{B})$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

"Tracing" a Linear Subspace

```
Given: • basis \(\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\) of vector space \(\mathbb{V}=\operatorname{span}(\mathcal{B})\)
- \(\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}\)
Task: return \(\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]\)
```

Intuition: given $\vec{u} \in \operatorname{span}(\mathcal{B})$, find smallest set $\mathcal{X} \subseteq \mathcal{B}$ s.t. $\vec{u} \in \operatorname{span}(\mathcal{X})$

"Tracing" a Linear Subspace

```
Given: - basis \(\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\) of vector space \(\mathbb{V}=\operatorname{span}(\mathcal{B})\)
- \(\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}\)
Task: return \(\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]\)
```

Intuition: given $\vec{u} \in \operatorname{span}(\mathcal{B})$, find smallest set $\mathcal{X} \subseteq \mathcal{B}$ s.t. $\vec{u} \in \operatorname{span}(\mathcal{X})$ Isn't that trivial?

"Tracing" a Linear Subspace

```
Given: - basis \(\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\) of vector space \(\mathbb{V}=\operatorname{span}(\mathcal{B})\)
- \(\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}\)
Task: return \(\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]\)
```

Intuition: given $\vec{u} \in \operatorname{span}(\mathcal{B})$, find smallest set $\mathcal{X} \subseteq \mathcal{B}$ s.t. $\vec{u} \in \operatorname{span}(\mathcal{X})$ Isn't that trivial? YES!

"Tracing" a Linear Subspace

Given: • basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vector space $\mathbb{V}=\operatorname{span}(\mathcal{B})$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

Intuition: given $\vec{u} \in \operatorname{span}(\mathcal{B})$, find smallest set $\mathcal{X} \subseteq \mathcal{B}$ s.t. $\vec{u} \in \operatorname{span}(\mathcal{X})$

Isn't that trivial? YES!

E.g., choose $\mathbb{V}=\mathbb{Z}_{p}^{n}$ for a prime p and $\vec{v}_{i}=\vec{e}_{i}$ (i-th unit vector)

On input $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$, return $\mathcal{I}=\left\{i: u_{i} \neq 0\right\}$

"Tracing" a Linear Subspace

Given: - basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vector space $\mathbb{V}=\operatorname{span}(\mathcal{B})$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \mathbb{V}$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

Intuition: given $\vec{u} \in \operatorname{span}(\mathcal{B})$, find smallest set $\mathcal{X} \subseteq \mathcal{B}$ s.t. $\vec{u} \in \operatorname{span}(\mathcal{X})$

Isn't that trivial? YES!

E.g., choose $\mathbb{V}=\mathbb{Z}_{p}^{n}$ for a prime p and $\vec{v}_{i}=\vec{e}_{i}$ (i-th unit vector)

On input $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$, return $\mathcal{I}=\left\{i: u_{i} \neq 0\right\}$
Note: trivial solution is optimal but inefficient

Tracing against Bounded Collusions

Relaxation of traceability: introduce an upper bound c on the maximum size of collusions

- never accuse honest user
- correct opening for collusions of size $\leq c$

Tracing against Bounded Collusions

Relaxation of traceability: introduce an upper bound c on the maximum size of collusions

- never accuse honest user
- correct opening for collusions of size $\leq c$

What does that mean for the subspace-tracing problem?

Given: - linearly independent vectors $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \operatorname{span}(\mathcal{B})$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

Tracing against Bounded Collusions

Relaxation of traceability: introduce an upper bound c on the maximum size of collusions

- never accuse honest user
- correct opening for collusions of size $\leq c$

What does that mean for the subspace-tracing problem?

Given: - c-linearly independent vectors $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \operatorname{span}_{c}(\mathcal{B})$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

Tracing against Bounded Collusions

Relaxation of traceability: introduce an upper bound c on the maximum size of collusions

- never accuse honest user
- correct opening for collusions of size $\leq c$

What does that mean for the subspace-tracing problem?

Given: - c-linearly independent vectors $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$

- $\vec{u}=\sum_{i} \omega_{i} \cdot \vec{v}_{i} \in \operatorname{span}_{c}(\mathcal{B})$

Task: return $\mathcal{I}:=\left\{i: \omega_{i} \neq 0\right\} \subseteq[n]$

Efficiency comparison:

- trivial solution $\mathcal{O}(n)$
- our work $\mathcal{O}\left(c^{2} \cdot \log (n / \varepsilon)\right) \quad(\varepsilon=$ maximum acceptable error probability)

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

IPP codes trace only a single parent, so we introduce fully IPP codes

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

IPP codes trace only a single parent, so we introduce fully IPP codes

To hide "bad" linear combinations, we need a hard discrete logarithm

Linear-Subspace Tracing: Under the Hood (if time permits...)

Analogy to IPP (and fingerprinting) codes:

- vectors \longleftrightarrow codewords
- linear combinations \longleftrightarrow descendants

IPP codes trace only a single parent, so we introduce fully IPP codes

To hide "bad" linear combinations, we need a hard discrete logarithm
but then extracting the descendant
is quite challenging

Conclusion

Conclusion

- definition of linearly-homomorphic group signatures

Conclusion

- definition of linearly-homomorphic group signatures
- combination of signatures created by different users makes derivation and traceability non-trivial

Conclusion

- definition of linearly-homomorphic group signatures
- combination of signatures created by different users makes derivation and traceability non-trivial
- the use of the subspace-tracing technique leads to "short" signatures

Conclusion

- definition of linearly-homomorphic group signatures
- combination of signatures created by different users makes derivation and traceability non-trivial
- the use of the subspace-tracing technique leads to "short" signatures

Thank you for your attention!

Conclusion

- definition of linearly-homomorphic group signatures
- combination of signatures created by different users makes derivation and traceability non-trivial
- the use of the subspace-tracing technique leads to "short" signatures

Thank you for your attention!

