Round-Optimal
 Oblivious Transfer and MPC from Computational CSIDH

Pratik Sarkar (Boston University)

Joint work with

Saikrishna Badrinarayanan, Linkedln Daniel Masny, Meta Pratyay Mukherjee, Supra
Sikhar Patranabis, IBM Research India
Srinivasan Raghuraman, Visa Research

Secure Two-Party Computation (2-PC)

- Correctness: $\Pi(x, y)=f(x, y)$
- Security: Π leaks no information about x and y beyond $\Pi(x, y)$

Oblivious Transfer (OT)

Security: Sender does not know b and Receiver does not know m_{1-b}

Oblivious Transfer (OT)

Security: Sender does not know b and Receiver does not know m_{1-b} Round-Optimal OT \longrightarrow Round-Optimal MPC [GS18,BL18]

This Talk

Our Focus

OT Protocols in Setup Model and Plain Model:

- Round-Optimal

This Talk

Our Focus

OT Protocols in Setup Model and Plain Model:

- Round-Optimal
- Simulation-Security

This Talk

Our Focus

OT Protocols in Setup Model and Plain Model:

- Round-Optimal
- Simulation-Security
- Weak isogeny-based assumptions

This Talk

Our Focus

OT Protocols in Setup Model and Plain Model:

- Round-Optimal
- Simulation-Security
- Weak isogeny-based assumptions
[BL18,GS18]: MPC in Setup Model and Plain Model:
- Round-Optimal
- Simulation-Security
- Weak isogeny-based assumptions

Isogeny-based OT Protocols in the Setup Model

Protocol	Computational Assumptions	Rounds	Security Model	Setup		
[ADMP20]	Decisional CSIDH	2	UC-security	CRS		
[BKW20]	Decisional CSIDH	2	UC-security	CRS+Random Oracle		
[LGdSG21]	Reciprocal CSIDH CSIDH	2	UC-security (Adaptive)	CRS		
DLog CSIDH						
(Knowledge of						
Exponent)					\quad	UC-security
:---:		CRS+Random				
:---:						
Oracle						

Isogeny-based OT Protocols in the Setup Model

Protocol	Computational Assumptions	Rounds	Security Model	Setup		
[ADMP20]	Decisional CSIDH	2	UC-security	CRS		
[BKW20]	Decisional CSIDH	2	UC-security	CRS+Random Oracle		
[LGdSG21]	Reciprocal CSIDH CSIDH	4	UC-security (Adaptive)	CRS		
This Work CSIDH						
(Knowledge of						
Exponent)					\quad	Computational
:---:						
CSIDH	$\quad 2 \quad$	UC-security				
:---:		CRS+Random				
:---:						
Oracle						

Our Contributions

Round Optimal Results in Setup Model:

- 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH

Our Contributions

Round Optimal Results in Setup Model:

- 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH
- 2-round MPC in CRS+Random Oracle Model from computational-CSIDH

Isogeny-based OT Protocols in the Plain Model

Protocol	Computational Assumptions	Rounds	Security Model
$[$ ADMP20]	Decisional CSIDH	2	Semantic security
$[$ RPS22]	Reciprocal CSIDH	4	Simulation security
$[\mathrm{KM20]}$	Decisional CSIDH	4	Simulation security

Isogeny-based OT Protocols in the Plain Model

Protocol	Computational Assumptions	Rounds	Security Model
[ADMP20]	Decisional CSIDH	2	Semantic security
[BPS22]	Reciprocal CSIDH	4	Simulation security
[KM20]	Decisional CSIDH Computational CSIDH	4	Simulation security
This Work	$\mathbf{4}$	Simulation security	

Our Contributions

Round Optimal Results in Setup Model:

- 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH
- 2-round MPC in CRS+Random Oracle Model from computational-CSIDH

Round Optimal Results in Plain Model:

- 4-round simulation-secure OT without Setup from computational-CSIDH

Our Contributions

Round Optimal Results in Setup Model:

- 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH
- 2-round MPC in CRS+Random Oracle Model from computational-CSIDH

Round Optimal Results in Plain Model:

- 4-round simulation-secure OT without Setup from computational-CSIDH
- 4-round simulation-secure MPC without Setup from computational-CSIDH

Our Contributions

Round Optimal Results in Setup Model:

- 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH
- 2-round MPC in CRS+Random Oracle Model from computational-CSIDH

Round Optimal Results in Plain Model:

- 4-round simulation-secure OT without Setup from computational-CSIDH
- 4-round simulation-secure MPC without Setup from computational-CSIDH

Other Results:

- Oblivious Transfer Extension: Each base-OT requires 4 isogeny computations
- Security based on Reciprocal-CSIDH (quantum equivalent to computationalCSIDH)

Group Actions - Basic Definitions

Definition

Group Action of a group ($G \cdot \cdot$) on a set \mathcal{X} is a function $*: G \times \mathcal{X} \rightarrow \mathcal{X}$ such that:

- Letting e be the identity element in G, for every $x \in \mathcal{X}$ we have $e * x=x$
- For every $g, h \in G$ and for every $x \in \mathcal{X}$ we have $(g \cdot h) * x=g *(h * x)$
- $\quad G$ is a commutative/abelian group
- For any $x, x^{\prime} \in \mathcal{X}$, there exists a unique $g \in G$ such that $g * x=x^{\prime}$

Group Actions - Basic Definitions

Definition

Group Action of a group (G, \cdot) on a set \mathcal{X} is a function $*: G \times \mathcal{X} \rightarrow \mathcal{X}$ such that:

- Letting e be the identity element in G, for every $x \in \mathcal{X}$ we have $e * x=x$
- For every $g, h \in G$ and for every $x \in \mathcal{X}$ we have $(g \cdot h) * x=g *(h * x)$
- $\quad G$ is a commutative/abelian group
- For any $x, x^{\prime} \in \mathcal{X}$, there exists a unique $g \in G$ such that $g * x=x^{\prime}$

Effective Group Action (EGA) : Can efficiently compute $g \star x$ for any $(g, x) \in G \times \mathcal{X}$
EGA Instantiations: CSIDH [CLMPR18] with known group structure, CSI-Fish [BKV19])

Group Actions - Computational Assumptions

Definition

ow-EGA (one-way EGA, models DLog-CSIDH):
For $g \leftarrow G$ and $x \leftarrow \mathcal{X}$, given $(x, g * x)$, it is computationally infeasible to compute g
wU-EGA (weak Unpredictable-EGA, models computational-CSIDH):
For $g, h \leftarrow G$ and $x \leftarrow \mathcal{X}$, given $(x, g * x, h * x)$, it is computationally infeasible to compute ($g . h$) *x

Semi-honest Oblivious Transfer in Setup model

$\left(m_{0}, m_{1}\right)$
Sender

b
Receiver

Semi-honest Oblivious Transfer in Setup model

$\left(m_{0}, m_{1}\right)$
Sender

$$
\text { CRS: }\left(x, x_{0}, x_{1}\right)
$$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Semi-honest Oblivious Transfer in Setup model

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$Y_{0}=k_{0} * x_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

$$
\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}
$$

$$
\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \oplus \mathrm{m}_{1}
$$

Semi-honest Oblivious Transfer in Setup model

$$
\text { CRS: }\left(x, x_{0}, x_{1}\right)
$$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$Y_{1}=k_{1} * x_{1}$
$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
$\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \oplus \mathrm{m}_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

Output

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Semi-honest Oblivious Transfer in Setup model

$\left(m_{0}, m_{1}\right)$	CRS: $\left(x, x_{0}, x_{1}\right)$	b
Sender	$\mathrm{OT}_{1}=\mathrm{z}$	Receiver
		Sample $\mathrm{r} \leftarrow \mathrm{G}, \mathrm{z}=\mathrm{r} * \mathrm{x}_{\mathrm{b}}$
Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$		
$Y_{0}=k_{0} * x_{0}$		
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$	$\mathrm{OT} \mathrm{T}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)$	
$\begin{aligned} & T_{0}=H\left(k_{0} * z\right) \oplus m_{0} \\ & T_{1}=H\left(k_{1} * z\right) \oplus m_{1} \end{aligned}$		$\begin{aligned} & \text { Output } \\ & m_{b}=T_{b} \oplus H\left(r * Y_{b}\right) \end{aligned}$

Receiver Privacy: Choice bit b is statistically hidden
Assuming $b=1$:

$$
\begin{aligned}
& \mathrm{z}=\mathrm{r} * \mathrm{x}_{1}=\mathrm{r}^{\prime} * \mathrm{x}_{0} \\
& \text { where } \mathrm{r}^{\prime}= \\
&=\mathrm{rg}_{1} \mathrm{~g}_{0}{ }^{-1}
\end{aligned}
$$

$$
\text { for } \mathrm{x}_{0}=\mathrm{g}_{0} * \mathrm{x}, \mathrm{x}_{1}=\mathrm{g}_{1} * \mathrm{x}=\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1} * \mathrm{x}_{0}
$$

Semi-honest Oblivious Transfer in Setup model

$$
\text { CRS: }\left(x, x_{0}, x_{1}\right)
$$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$Y_{0}=k_{0} * x_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
$\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \oplus \mathrm{m}_{1}$

Sample $r \leftarrow G, z=r * x_{b}$

Output
$m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)$

Receiver Privacy: Choice bit b is statistically hidden

Sender Privacy: If Receiver computes m_{1-b} then break wu-EGA property
(Need to extract r for the reduction)

Semi-honest Oblivious Transfer in Setup model

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
$T_{1}=H\left(k_{1} * z\right) \oplus m_{1}$
Secure against
malicious sender

Sample $r \leftarrow G, z=r * x_{b}$

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Sender Privacy: If Receiver computes m_{1-b} then break wu-EGA property
(Need to extract r for the reduction)

Semi-honest Oblivious Transfer in Setup model

$\left(m_{0}, m_{1}\right)$
Sender

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $r \leftarrow G, z=r * x_{b}$
Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$Y_{1}=k_{1} * x_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
$T_{1}=H\left(k_{1} * 7\right) \oplus m_{1}$
Secure against
malicious sender

Sender Privacy: If Receiver computes m_{1-b} then break wu-EGA property (Need to extract r for the reduction)

Non-interactive Witness-Indistinguishability Proof-of-Knowledge (NIWI)

Completeness: Verifier outputs 1 if $(x, w) \in R_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Witness-Indistinguishability: $\Pi_{0} \approx \Pi_{1}$ where Π_{b} is generated using witness w_{b} (where $\mathrm{w}_{0}, \mathrm{w}_{1}$ are valid witness)
Proof-of-Knowledge: Witness w can be extracted from an accepting proof

Non-interactive Witness-Indistinguishability Proof-of-Knowledge (NIWI)

Completeness: Verifier outputs 1 if $(x, w) \in R_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Witness-Indistinguishability: $\Pi_{0} \approx \Pi_{1}$ where Π_{b} is generated using witness w_{b} (where $\mathrm{w}_{0}, \mathrm{w}_{1}$ are valid witness)
Proof-of-Knowledge: Witness w can be extracted from an accepting proof

Maliciously Secure Oblivious Transfer in Setup model

$\left(m_{0}, m_{1}\right)$
Sender

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$Y_{1}=k_{1} * x_{1}$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
Output
$\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \oplus \mathrm{m}_{1}$

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Need to extract b, r from Malicious receiver

Maliciously Secure Oblivious Transfer in Setup model

Maliciously Secure Oblivious Transfer in Setup model (Input Privacy)

$\left(m_{0}, m_{1}\right)$
Sender

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}, \Pi
$$

$\underset{\text { Verify } \Pi}{\text { Sample } \mathrm{k}_{0}, \mathrm{k}_{1}} \leftarrow G$
$Y_{0}=k_{0} * x_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$
$\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}$
$\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \oplus \mathrm{m}_{1}$

Receiver Privacy: Choice bit b is statistically hidden, Π is Witness-Indistinguish.

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

Sender Privacy: If Receiver computes $m_{1-\mathrm{b}}$ then break wu-EGA property, Π is Sound and extractable (Need to extract r for the reduction)

Maliciously Secure Oblivious Transfer in Setup model (Input Extraction)

$\left(m_{0}, m_{1}\right)$
Sender

Verify Π
Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$

$$
\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \oplus \mathrm{m}_{0}
$$

$$
\mathrm{T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \bigoplus \mathrm{m}_{1}
$$

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\mathrm{OT}_{1}=\mathrm{z}, \Pi
$$

$$
\mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
$$

Sample $r \leftarrow G, z=r * x_{b}$

$$
\begin{gathered}
\Pi=\operatorname{NIWI}\left(\exists r: z=r * x_{0}\right. \\
\left.\vee z=r * x_{1}\right)
\end{gathered}
$$

Output
$m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)$
Need to extract b, r from Malicious receiver

Sender Input Extraction: Compute m_{1} by setting $\mathrm{b}=1$, extract m_{0} by using the CRS trapdoor $\left(=\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1}\right)$
Assuming $b=1: \quad z=r * x_{1}=\mathbf{r}^{\prime} * x_{0}$
(where $\mathbf{r}^{\prime}=\mathbf{r} \mathrm{g}_{1} \mathrm{~g}_{\mathbf{0}}{ }^{-1}$ for $\mathrm{x}_{0}=\mathrm{g}_{0} * \mathrm{x}, \mathrm{x}_{1}=\mathrm{g}_{1} * \mathrm{x}=\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1} * \mathrm{x}_{0}$)

Maliciously Secure Oblivious Transfer in Setup model (Input Extraction)

$\left(m_{0}, m_{1}\right)$
Sender

Verify Π

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$
$\mathrm{Y}_{0}=\mathrm{k}_{0} * \mathrm{x}_{0}$
$\mathrm{Y}_{1}=\mathrm{k}_{1} * \mathrm{x}_{1}$

$$
\begin{aligned}
& \mathrm{OT}_{1}=\mathrm{z}, \Pi \\
& \mathrm{OT}_{2}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right)
\end{aligned}
$$

CRS: $\left(x, x_{0}, x_{1}\right)$

$$
\begin{aligned}
& \mathrm{T}_{0}=\mathrm{H}\left(\mathrm{k}_{0} * \mathrm{z}\right) \bigoplus \mathrm{m}_{0} \\
& \mathrm{~T}_{1}=\mathrm{H}\left(\mathrm{k}_{1} * \mathrm{z}\right) \bigoplus \mathrm{m}_{1}
\end{aligned}
$$

Receiver Input Extraction: Extract b, r from П

Sample $r \leftarrow G, z=r * x_{b}$

$$
\begin{gathered}
\Pi=\operatorname{NIWI}\left(\exists r: z=r * x_{0}\right. \\
\left.\vee z=r * x_{1}\right)
\end{gathered}
$$

Output

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Extract b, r from П

Sender Input Extraction: Compute m_{1} by setting $\mathrm{b}=1$, extract m_{0} by using the CRS trapdoor $\left(=\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1}\right)$
Assuming $b=1: \quad z=r * x_{1}=r^{\prime} * x_{0}$
(where $\mathbf{r}^{\prime}=\mathbf{r} \mathrm{g}_{1} \mathrm{~g}_{\mathbf{0}}{ }^{-1}$ for $\mathrm{x}_{0}=\mathrm{g}_{0} * \mathrm{x}, \mathrm{x}_{1}=\mathrm{g}_{1} * \mathrm{x}=\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1} * \mathrm{x}_{0}$)

Delayed-Input Zero-Knowledge Proof-of-Knowledge (ZK)

Completeness: Verifier outputs 1 if $(\mathrm{x}, \mathrm{w}) \in \mathrm{R}_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Zero-Knowledge: П leaks no information about w to the Verifier
Proof-of-Knowledge: Witness w can be extracted from an accepting proof
Delayed-Input: Only the last ZK protocol message depends on statement x

Delayed-Input Zero-Knowledge Proof-of-Knowledge (ZK)

Completeness: Verifier outputs 1 if $(\mathrm{x}, \mathrm{w}) \in \mathrm{R}_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Zero-Knowledge: П leaks no information about w to the Verifier
Proof-of-Knowledge: Witness w can be extracted from an accepting proof
Delayed-Input: Only the last ZK protocol message depends on statement x

Delayed-Input Witness-Indistinguishability Proof-of-Knowledge (WI)

Completeness: Verifier outputs 1 if $(\mathrm{x}, \mathrm{w}) \in \mathrm{R}_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Witness-Indistinguishability: $\Pi_{0} \approx \Pi_{1}$ where Π_{b} is generated using witness w_{b} (where $\mathrm{w}_{0}, \mathrm{w}_{1}$ are valid witness)
Proof-of-Knowledge: Witness w can be extracted from an accepting proof
Delayed-Input: Only the last WI protocol message depends on statement x

Delayed-Input Witness-Indistinguishability Proof-of-Knowledge (WI)

Completeness: Verifier outputs 1 if $(\mathrm{x}, \mathrm{w}) \in \mathrm{R}_{L}$
Soundness: If $\mathrm{x} \notin L$, Verifier outputs 0 with high probability
Witness-Indistinguishability: $\Pi_{0} \approx \Pi_{1}$ where Π_{b} is generated using witness w_{b} (where $\mathrm{w}_{0}, \mathrm{w}_{1}$ are valid witness)
Proof-of-Knowledge: Witness w can be extracted from an accepting proof
Delayed-Input: Only the last WI protocol message depends on statement x

Maliciously Secure Oblivious Transfer in Plain model

Maliciously Secure Oblivious Transfer in Plain model (Input Privacy)

Receiver: b

$$
\begin{gathered}
\text { Sample } r \leftarrow G, z=r * x_{b} \\
\begin{array}{c}
\Pi_{3} \mathrm{WI}=\mathrm{WI}\left(\exists r: z=r * x_{0}\right. \\
\left.V z=r * x_{1}\right)
\end{array}
\end{gathered}
$$

Output

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Maliciously Secure Oblivious Transfer in Plain model (Input Privacy)

Receiver: b

$$
\begin{gathered}
\text { Sample } r \leftarrow G, z=r * x_{b} \\
\Pi_{3}{ }^{W I}=W I\left(\exists r: z=r * x_{0}\right. \\
\left.V z=r * x_{1}\right)
\end{gathered}
$$

Verify $\left(\Pi_{1}{ }^{\mathrm{ZK}}, \Pi_{2}{ }^{\mathrm{ZK}}, \Pi_{3}{ }^{\mathrm{ZK}}, \Pi_{4}{ }^{\mathrm{ZK}}\right)$
Output

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Maliciously Secure Oblivious Transfer in Plain model (Input Privacy)

Sender:
$\left(\mathrm{m}_{0}, \mathrm{~m}_{1}\right)$

$$
\mathrm{OT}_{1}=\left(\Pi_{1}^{\mathrm{WI}}, \Pi_{1}^{\mathrm{ZK}}\right)
$$

Receiver: b

$$
\begin{gathered}
\text { Sample } \mathrm{g}_{0}, \mathrm{~g}_{1} \leftarrow G \\
\mathrm{x}_{0}=\mathrm{g}_{0} * \mathrm{x}, \mathrm{x}_{1}=\mathrm{g}_{1} * \mathrm{x}
\end{gathered}
$$

$$
\mathrm{OT}_{2}=\left(\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right), \Pi_{2}^{\mathrm{WI}}, \Pi_{2}^{\mathrm{ZK}}\right)
$$

Verify $\left(\Pi_{1}{ }^{\mathrm{WI}}, \Pi_{2}{ }^{\mathrm{WI}}, \Pi_{3}{ }^{\mathrm{WI}}\right)$

$$
\mathrm{OT}_{3}=\left(\mathrm{z}, \Pi_{3}^{\mathrm{WI}}, \Pi_{3}^{\mathrm{ZK}}\right)
$$

Sample $\mathrm{k}_{0}, \mathrm{k}_{1} \leftarrow G$

$$
\begin{gathered}
Y_{0}=k_{0} * x_{0}, Y_{1}=k_{1} * x_{1} \\
T_{0}=H\left(k_{0} * z\right) \oplus m_{0} \\
T_{1}=H\left(k_{1} * z\right) \oplus m_{1}
\end{gathered}
$$

$$
\Pi_{4}^{\mathrm{ZK}}=\mathrm{ZK}\left(\exists \mathrm{~g}_{0}, \mathrm{~g}_{1}:\right.
$$

$$
\mathrm{OT}_{4}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \mathrm{~T}_{0}, \mathrm{~T}_{1}\right), \Pi_{4}^{\mathrm{ZK}}
$$

$$
\text { Verify }\left(\Pi_{1}^{\mathrm{ZK}}, \Pi_{2}^{\mathrm{ZK}}, \Pi_{3}^{\mathrm{ZK}}, \Pi_{4}^{\mathrm{ZK}}\right)
$$

$$
\left.\mathrm{x}_{0}=\mathrm{g}_{0} * \mathrm{x}, \mathrm{x}_{1}=\mathrm{g}_{1} * \mathrm{x}\right)
$$

Output

$$
m_{b}=T_{b} \bigoplus H\left(r * Y_{b}\right)
$$

Receiver Privacy: b is statistically hidden, Π^{WI} is Witness-Indistinguishable, Π^{ZK} is Sound
Sender Privacy: If R computes m_{1-b} then break wu-EGA property, $\Pi^{W I}$ is Sound, $\Pi^{Z K}$ is Zero Knowledge

Maliciously Secure Oblivious Transfer in Plain model (Input Extraction)

Maliciously Secure Oblivious Transfer in Plain model (Input Extraction)

Maliciously Secure Oblivious Transfer in Plain model (Input Extraction)

Receiver: b

$$
\begin{gathered}
\text { Sample } r \leftarrow G, z=r * x_{b} \\
\begin{array}{c}
\Pi_{3} \mathrm{WI}=W I\left(\exists r: z=r * x_{0}\right. \\
\left.V z=r * x_{1}\right)
\end{array}
\end{gathered}
$$

$$
\text { Verify }\left(\Pi_{1}{ }^{\mathrm{ZK}}, \Pi_{2}{ }^{\mathrm{ZK}}, \Pi_{3}^{\mathrm{ZK}}, \Pi_{4}{ }^{\mathrm{ZK}}\right)
$$

Output

$$
m_{b}=T_{b} \oplus H\left(r * Y_{b}\right)
$$

Receiver Input Extraction: Extract r from $\Pi^{W I}$, set b where $z=r * x_{b}$
Sender Input Extraction: Extract $\left(g_{0}, g_{1}\right)$ from $\Pi^{Z K}$, Compute m_{1} by setting $\mathrm{b}=1$, Extract m_{0} using $\mathrm{g}_{1} * \mathrm{~g}_{0}{ }^{-1}$

Build $\Pi^{\mathrm{ZK}}, \Pi^{\mathrm{WI}}$ from wu-EGA

Conclusion

- Round Optimal OT/MPC Results in CRS+Random Oracle Model from computational-CSIDH
- Round Optimal OT/MPC Results in Plain Model from computational-CSIDH
- Oblivious Transfer Extension based on Reciprocal-CSIDH

Open Problems:

- 2-round computational-CSIDH based UC-OT without Random Oracle?
- Efficient (incurring $\mathrm{O}(1)$ isogeny computations) 2-round UC-OT from computational-CSIDH ?

Thank You

eprint.iacr.org/ 2022/1511

