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Chapter I

Introduction



Secure Two-Party Computation (2-PC)

• Correctness: Π 𝑥, 𝑦 = 𝑓 𝑥, 𝑦
• Security: Π leaks no information about 𝑥 and 𝑦 beyond Π 𝑥, 𝑦
• Study of 2-PC (and MPC) initiated in [Yao82, GMW87, BMR90]

Protocol Π for 
securely computing 

function 𝑓

Input 𝑦Input 𝑥



Oblivious Transfer (OT)

𝑏 ∈ {0,1}

Sender Receiver

Security: Sender does not know b and Receiver does not know 𝑚!"#

𝑚0, 𝑚1 ∈ {0,1}λ

Outputs 𝑚#No Output

Oblivious
Transfer
Protocol

𝑚$, 𝑚! 𝑏

𝑚#
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Security: Sender does not know b and Receiver does not know 𝑚!"#

Round-Optimal OT  Round-Optimal MPC [GS18,BL18]
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Isogeny-based OT Protocols in the Setup Model

Protocol Computational 
Assumptions Rounds Security Model Setup
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Our Contributions

Round Optimal Results in Setup Model:
• 2-round UC-OT in CRS+Random Oracle Model from computational-CSIDH
• 2-round MPC in CRS+Random Oracle Model from computational-CSIDH

Round Optimal Results in Plain Model:
• 4-round simulation-secure OT without Setup from computational-CSIDH
• 4-round simulation-secure MPC without Setup from computational-CSIDH
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Isogeny 
Preliminaries



Group Actions – Basic Definitions

Group Action of a group (𝐺,⋅) on a set 𝒳 is a function ∗ ∶ 𝐺 × 𝒳 → 𝒳 such that:
• Letting 𝑒 be the identity element in 𝐺, for every 𝑥 ∈ 𝒳 we have 𝑒 ∗ 𝑥 = 𝑥
• For every 𝑔, ℎ ∈ 𝐺 and for every 𝑥 ∈ 𝒳 we have 𝑔 ⋅ ℎ ∗ 𝑥 = 𝑔 ∗ (ℎ ∗ 𝑥)
• 𝐺 is a commutative/abelian group
• For any 𝑥, 𝑥! ∈ 𝒳, there exists a unique 𝑔 ∈ 𝐺 such that 𝑔 ∗ 𝑥 = 𝑥′

Effective Group Action (EGA) : Can efficiently compute 𝑔 ⋆ 𝑥 for any 𝑔, 𝑥 ∈ 𝐺×𝒳

Restricted EGA (REGA) : Can efficiently compute 𝑔 ⋆ 𝑥 for any 𝑔 ∈ 𝐺! ⊂ 𝐺 and any 𝑥 ∈ 𝒳

Instantiations: 
• EGA: CSIDH [CLMPR18] with known group structure ala CSI-Fish [BKV19])
• REGA: CSIDH with unknown group structure

Definition
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Group Actions – Basic Definitions

Not broken by the recent attacks on the SIDH family of isogenies! 



ow-EGA (one-way EGA, models DLog-CSIDH):

For 𝑔 ← 𝐺 and 𝑥 ← 𝒳, given 𝑥, 𝑔 ∗ 𝑥 , it is computationally infeasible to compute 𝑔

wU-EGA (weak Unpredictable-EGA, models computational-CSIDH):

For 𝑔, ℎ ← 𝐺 and 𝑥 ← 𝒳, given 𝑥, 𝑔 ∗ 𝑥, ℎ ∗ 𝑥 , it is computationally infeasible to compute 𝑔. ℎ ∗ 𝑥

Definition

Group Actions – Computational Assumptions
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Round Optimal OT 
in Setup Model



b

Sender Receiver
OT1 = z

OT2 = (Y0, Y1, T0, T1)

(m0, m1)

Semi-honest Oblivious Transfer in Setup model
CRS: (x , x0 , x1)

Sample r ← G
z = r ∗ xb

Sample k0, k1 ← G
Y0 = k0 ∗ x0
Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0
T1 = H(k1 ∗ z) ⊕ m1

Output
mb = Tb ⊕H(r ∗ Yb)
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b

Sender Receiver

Receiver Privacy: Choice bit b is statistically hidden
Assuming b = 1: 

z  =  r ∗ x1  =  r′ ∗ x0
where r′ = r g1 g0

−1

for x0 = g0 ∗ x , x1 = g1 ∗ x = g1 ∗ g0
-1 ∗ x0

OT1 = z

OT2 = (Y0, Y1, T0, T1)
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Sender Receiver

Receiver Privacy: Choice bit b is statistically hidden

Sender Privacy: If Receiver computes m1-b  then break wu-EGA property
(Need to extract r for the reduction)
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Sender Receiver

Receiver Privacy: Choice bit b is statistically hidden

Sender Privacy: If Receiver computes m1-b  then break wu-EGA property
(Need to extract r for the reduction)

OT1 = z

OT2 = (Y0, Y1, T0, T1)
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Secure against 
malicious sender

Need to extract b, r from 
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Non-interactive Witness-Indistinguishability Proof-of-Knowledge (NIWI)

Completeness: Verifier outputs 1 if x,w ∈ R"
Soundness: If x ∉ 𝐿, Verifier outputs 0 with high probability

Witness-Indistinguishability: Π0 ≈ Π1 where Πb is generated using witness wb (where w0 , w1 are valid witness)

Proof-of-Knowledge: Witness w can be extracted from an accepting proof

NP statement: x
Witness: w NP statement: x

Prover Verifier

Π = NIWI( ∃w : (x, w) ∈ R%)
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Sender Receiver

Receiver Privacy: Choice bit b is statistically hidden, Π is Witness-Indistinguishable

Sender Privacy: If Receiver computes m1-b  then break wu-EGA property, Π is Sound and extractable
(Need to extract r for the reduction)

OT1 = z

OT2 = (Y0, Y1, T0, T1)
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Sender Receiver

Receiver Privacy: Choice bit b is statistically hidden, Π is Witness-Indistinguish.

Sender Privacy: If Receiver computes m1-b  then break wu-EGA property, Π is Sound and extractable
(Need to extract r for the reduction)

OT1 = z  , Π

OT2 = (Y0, Y1, T0, T1)

(m0, m1)
CRS: (x , x0 , x1)

Verify Π
Sample k0, k1 ← G

Y0 = k0 ∗ x0
Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0
T1 = H(k1 ∗ z) ⊕ m1

Output
mb = Tb ⊕H(r ∗ Yb)

Sample r ← G, z = r ∗ xb

Π = NIWI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Maliciously Secure Oblivious Transfer in Setup model (Input Privacy)

Need to extract b, r from 
Malicious receiver
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Sender Receiver

Receiver Input Extraction: Extract b, r from Π

Sender Input Extraction: Compute m1 by setting b = 1, extract m0 by using the CRS trapdoor (= g1 ∗ g0
-1 )

Assuming b = 1: z  =  r ∗ x1  =  r′ ∗ x0 (where r′ = r g1 g0
−1 for x0 = g0 ∗ x , x1 = g1 ∗ x = g1 ∗ g0

-1 ∗ x0 )

OT1 = z  , Π

OT2 = (Y0, Y1, T0, T1)

(m0, m1)
CRS: (x , x0 , x1)

Verify Π
Sample k0, k1 ← G

Y0 = k0 ∗ x0
Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0
T1 = H(k1 ∗ z) ⊕ m1

Output
mb = Tb ⊕H(r ∗ Yb)

Sample r ← G, z = r ∗ xb

Π = NIWI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Maliciously Secure Oblivious Transfer in Setup model (Input Extraction)

Need to extract b, r from 
Malicious receiver
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Sender Receiver

Receiver Input Extraction: Extract b, r from Π

Sender Input Extraction: Compute m1 by setting b = 1, extract m0 by using the CRS trapdoor (= g1 ∗ g0
-1 )

Assuming b = 1: z  =  r ∗ x1  =  r′ ∗ x0 (where r′ = r g1 g0
−1 for x0 = g0 ∗ x , x1 = g1 ∗ x = g1 ∗ g0

-1 ∗ x0 )

OT1 = z  , Π
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(m0, m1)
CRS: (x , x0 , x1)

Verify Π
Sample k0, k1 ← G

Y0 = k0 ∗ x0
Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0
T1 = H(k1 ∗ z) ⊕ m1

Output
mb = Tb ⊕H(r ∗ Yb)

Sample r ← G, z = r ∗ xb

Π = NIWI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Maliciously Secure Oblivious Transfer in Setup model (Input Extraction)

Extract b, r from Π
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Delayed-Input Zero-Knowledge Proof-of-Knowledge (ZK)

Completeness: Verifier outputs 1 if x,w ∈ R"
Soundness: If x ∉ 𝐿, Verifier outputs 0 with high probability

Zero-Knowledge: Π leaks no information about w to the Verifier

Proof-of-Knowledge: Witness w can be extracted from an accepting proof

Delayed-Input: Only the last ZK protocol message depends on statement x

Protocol ΠZK for
deciding language 𝐿

NP statement: x
Witness: w NP statement: x

Prover Verifier
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Delayed-Input Witness-Indistinguishability Proof-of-Knowledge (WI)

Completeness: Verifier outputs 1 if x,w ∈ R"
Soundness: If x ∉ 𝐿, Verifier outputs 0 with high probability

Witness-Indistinguishability: Π0 ≈ Π1 where Πb is generated using witness wb (where w0 , w1 are valid witness)

Proof-of-Knowledge: Witness w can be extracted from an accepting proof

Delayed-Input: Only the last WI protocol message depends on statement x

Protocol ΠWI for
deciding language 𝐿

NP statement: x
Witness: w NP statement: x

Prover Verifier
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Completeness: Verifier outputs 1 if x,w ∈ R"
Soundness: If x ∉ 𝐿, Verifier outputs 0 with high probability

Witness-Indistinguishability: Π0 ≈ Π1 where Πb is generated using witness wb (where w0 , w1 are valid witness)

Proof-of-Knowledge: Witness w can be extracted from an accepting proof
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Protocol ΠWI for
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Build from wu-EGA



Sample r ← G, z = r ∗ xb

Π3WI = WI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Receiver: b

OT3 = (z  ,Π3WI , Π3ZK )

OT4 = (Y0, Y1, T0, T1)

Sender:
(m0, m1)

Maliciously Secure Oblivious Transfer in Plain model

Sample g0, g1 ← G
x0 = g0 ∗ x , x1 = g1 ∗ x

Verify (Π1WI , Π2WI , Π3WI )

Sample k0, k1 ← G
Y0 = k0 ∗ x0 , Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0, 
T1 = H(k1 ∗ z) ⊕ m1

Π4ZK = ZK(∃g0, g1 : 
x0 = g0 ∗ x , x1 = g1 ∗ x)

Verify (Π1ZK , Π2ZK , Π3ZK , Π4ZK )

Output
mb = Tb ⊕H(r ∗ Yb)

OT1 = (Π1WI , Π1ZK )

OT2 = ((x0, x1), Π2WI , Π2ZK )



Sample r ← G, z = r ∗ xb

Π3WI = WI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Receiver: b

OT3 = (z  ,Π3WI , Π3ZK )

OT4 = (Y0, Y1, T0, T1)

Sender:
(m0, m1)

Maliciously Secure Oblivious Transfer in Plain model (Input Privacy)

Sample g0, g1 ← G
x0 = g0 ∗ x , x1 = g1 ∗ x

Verify (Π1WI , Π2WI , Π3WI )

Sample k0, k1 ← G
Y0 = k0 ∗ x0 , Y1 = k1 ∗ x1

T0 = H(k0 ∗ z) ⊕ m0, 
T1 = H(k1 ∗ z) ⊕ m1

Π4ZK = ZK(∃g0, g1 : 
x0 = g0 ∗ x , x1 = g1 ∗ x)

Verify (Π1ZK , Π2ZK , Π3ZK , Π4ZK )

Output
mb = Tb ⊕H(r ∗ Yb)

OT1 = (Π1WI , Π1ZK )

OT2 = ((x0, x1), Π2WI , Π2ZK )

Receiver Privacy: b is statistically hidden, ΠWI is Witness-Indistinguishable, ΠZK is Sound



Sample r ← G, z = r ∗ xb

Π3WI = WI(∃r : z = r ∗ x0
∨ z = r ∗ x1)

Receiver: b

OT3 = (z  ,Π3WI , Π3ZK )

OT4 = (Y0, Y1, T0, T1), Π4ZK

Sender:
(m0, m1)
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Chapter VI

Concluding
Remarks



Conclusion

• Round Optimal OT/MPC Results in CRS+Random Oracle Model from computational-CSIDH

• Round Optimal OT/MPC Results in Plain Model from computational-CSIDH

• Oblivious Transfer Extension based on Reciprocal-CSIDH

Open Problems:
• 2-round computational-CSIDH based UC-OT without Random Oracle?

• Efficient (incurring O(1) isogeny computations) 2-round UC-OT from computational-CSIDH ?
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