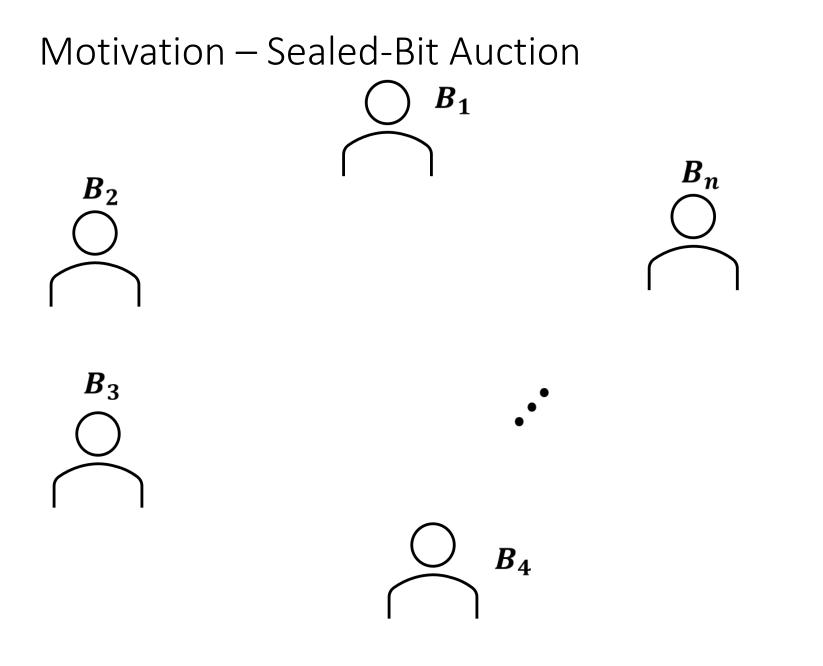
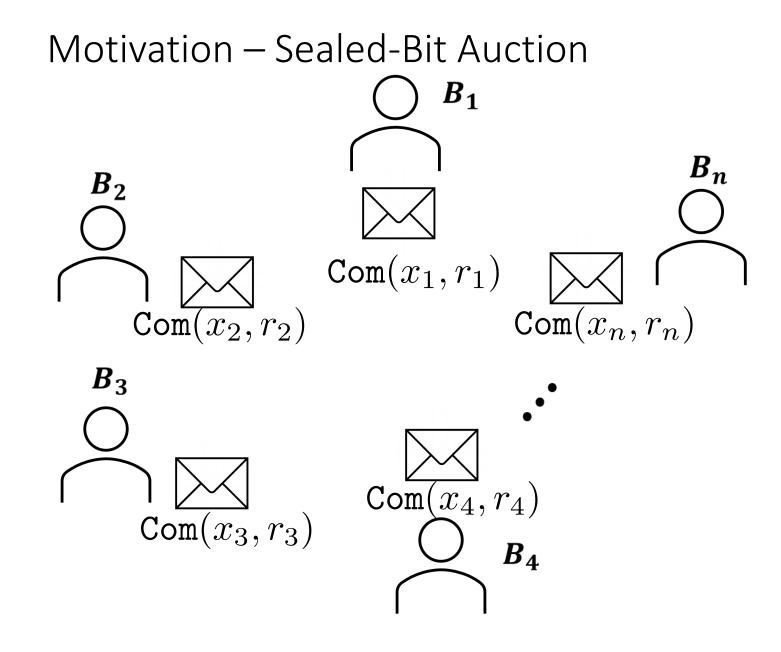
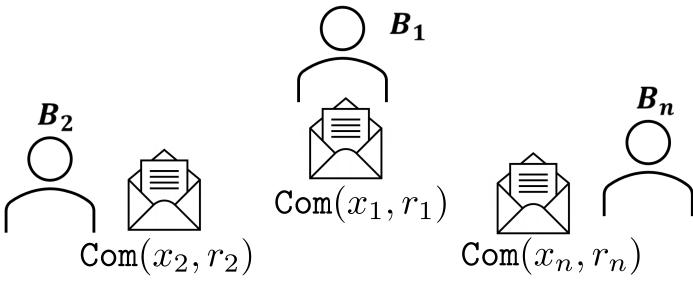
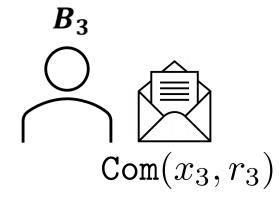
Simple, Fast, Efficient, and Tightly-Secure Non-Malleable Non-Interactive Timed Commitments

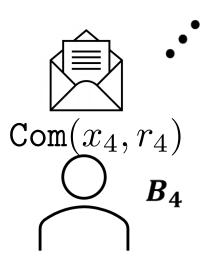
Peter Chvojka, Tibor Jager

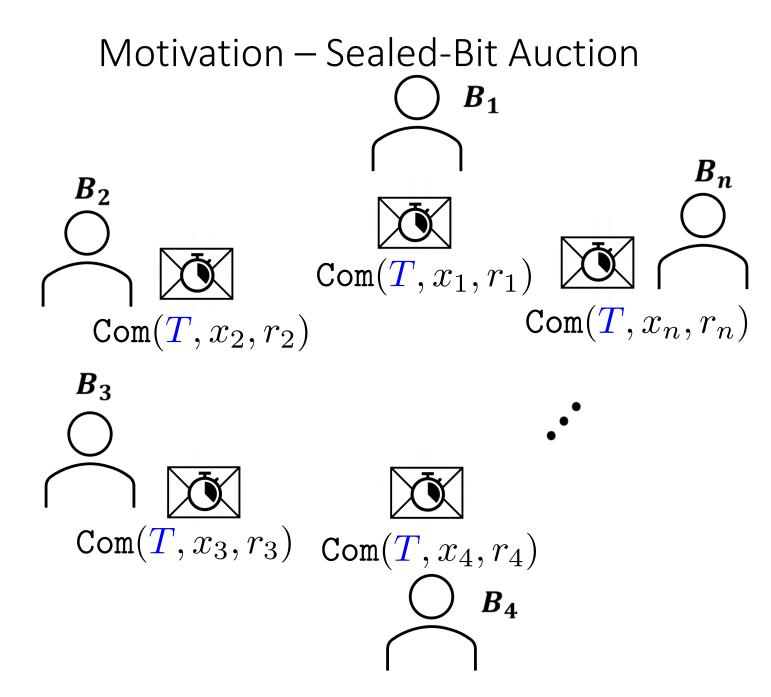


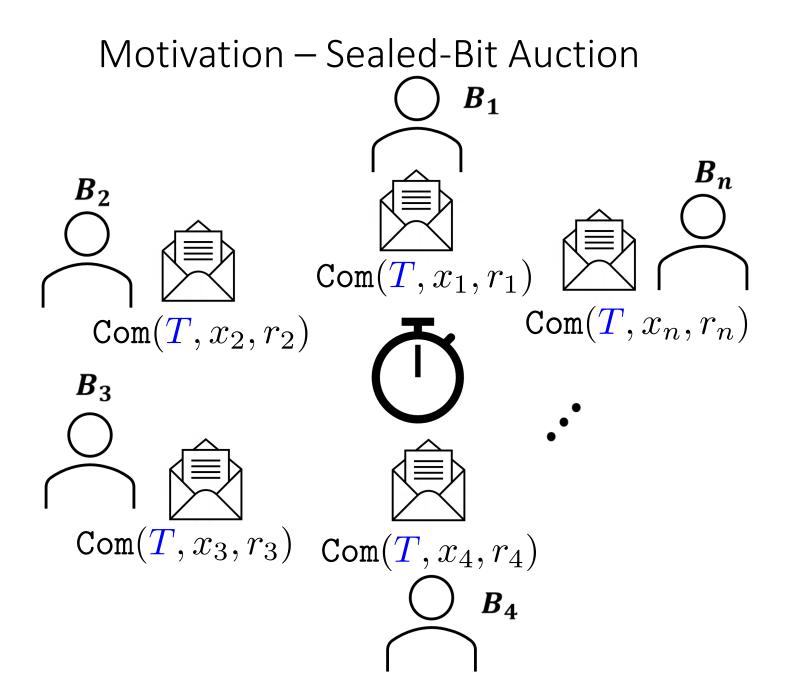


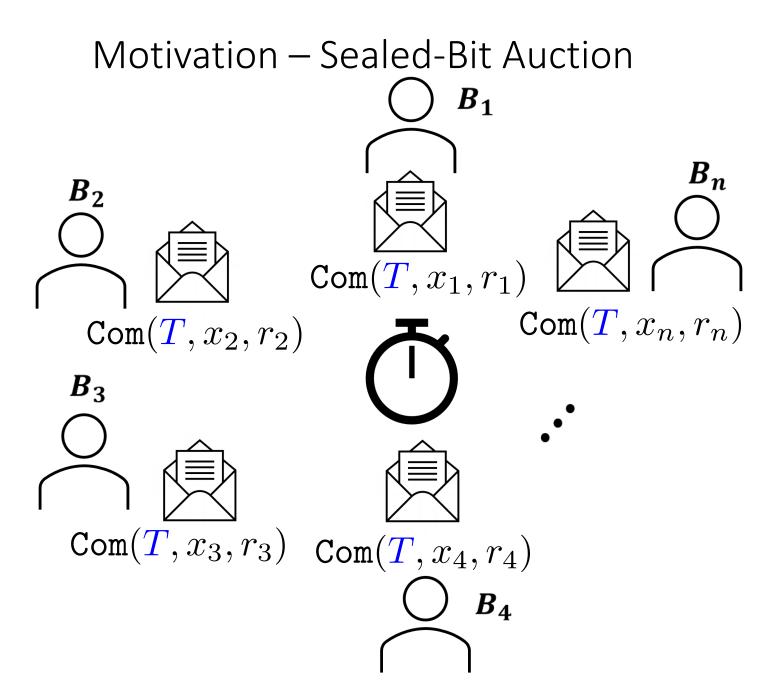






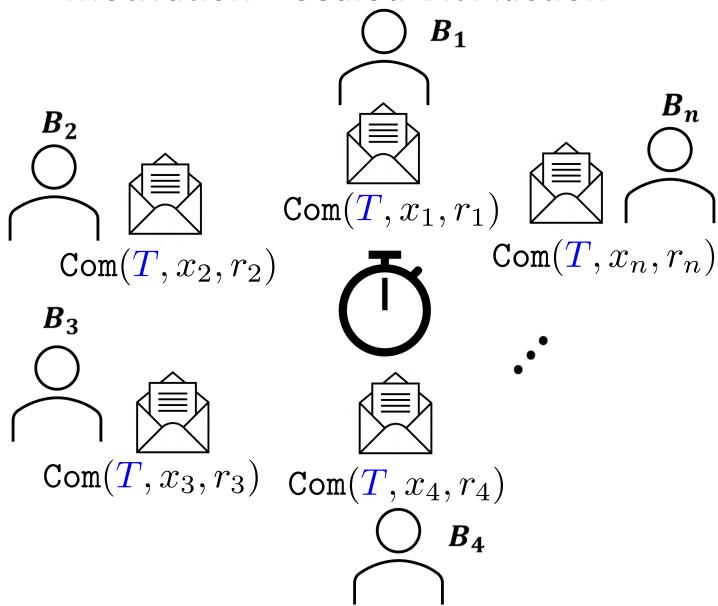




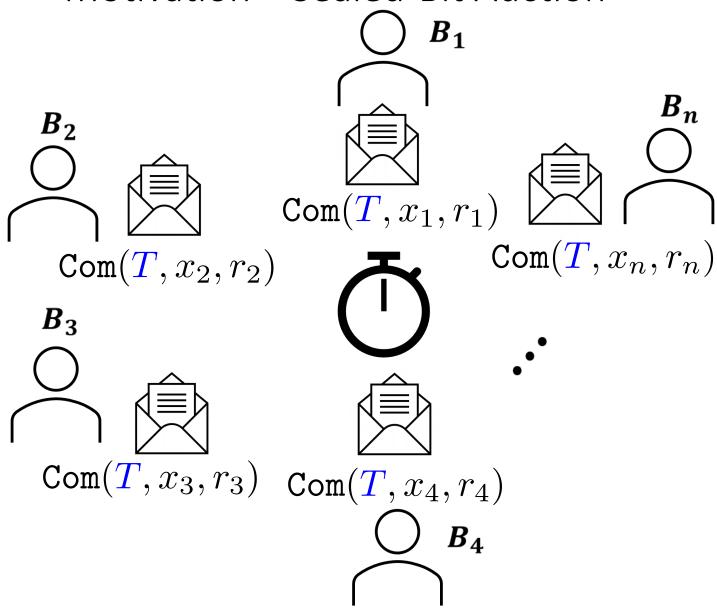


• Public Verifiability of Commitments

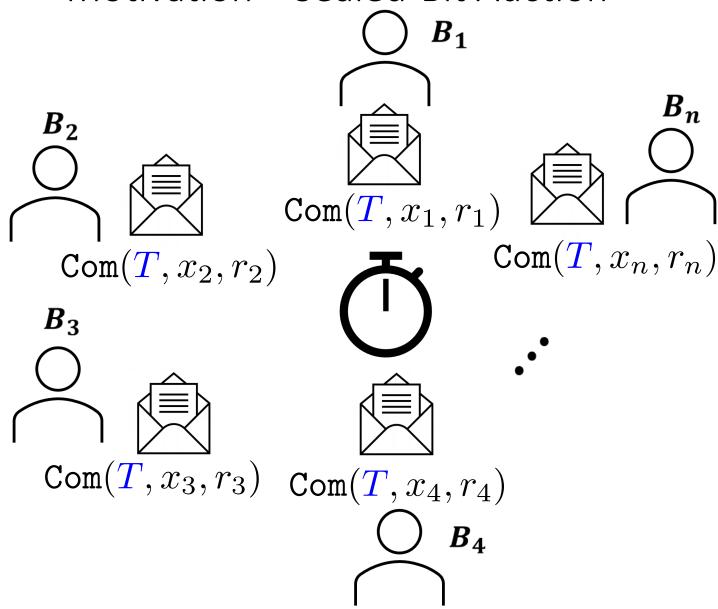
- $\boldsymbol{B_n}$ B_2 $\mathtt{Com}(\overline{T,x_1},r_1)$ $\operatorname{Com}(T, x_n, r_n)$ $\operatorname{Com}(T, x_2, r_2)$ B_3 $\operatorname{Com}(T, x_3, r_3) \quad \operatorname{Com}(T, x_4, r_4)$ B_4
- Public Verifiability of **Commitments**
- Non-Interactivity



- Public Verifiability of Commitments
- Non-Interactivity
- Non-Malleability/CCA security



- Public Verifiability of Commitments
- Non-Interactivity
- Non-Malleability/CCA security
- Homomorphic Properties



- Public Verifiability of Commitments
- Non-Interactivity
- Non-Malleability/CCA security
- Homomorphic Properties
- Public Verifiability of Forced Decommitment

Applications

- Unbiased E-voting (MT19)
- Sealed Bid Auctions (MT19)
- Multi-Party Contract Signing (MT19)
- Fairness in Multi-Party Computation Fair Coin Flipping (MT19)
- Revealing Census Data
- Responsible Disclosure of Security Flaws

Non-Interactive Timed Commitment (KLX20)

- crs \leftarrow PGen $(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \text{ComVrfy}(\text{crs}, c, \pi_{\text{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $m \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T

Non-Interactive Timed Commitment Publicly Verifiable (KLX20)

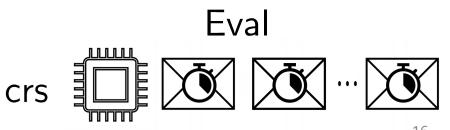
- $\operatorname{crs} \leftarrow \operatorname{PGen}(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \mathsf{ComVrfy}(\mathsf{crs}, c, \pi_{\mathsf{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $(m, \pi_{\mathsf{FDec}}) \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T
- $0/1 \leftarrow \mathsf{FDecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{FDec}})$

Non-Interactive Timed Commitment Publicly Verifiable Homomorphic (KLX20) (TCLM21)

- $\operatorname{crs} \leftarrow \operatorname{PGen}(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \mathsf{ComVrfy}(\mathsf{crs}, c, \pi_{\mathsf{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $(m, \pi_{\mathsf{FDec}}) \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T
- $0/1 \leftarrow \mathsf{FDecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{FDec}})$
- Eval

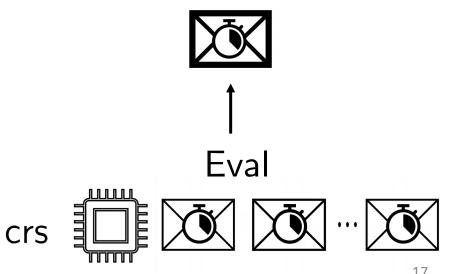
Non-Interactive Timed Commitment Publicly Verifiable Homomorphic (KLX20) (TCLM21)

- $\operatorname{crs} \leftarrow \operatorname{PGen}(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \mathsf{ComVrfy}(\mathsf{crs}, c, \pi_{\mathsf{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $(m, \pi_{\mathsf{FDec}}) \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T
- $0/1 \leftarrow \mathsf{FDecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{FDec}})$
- Eval



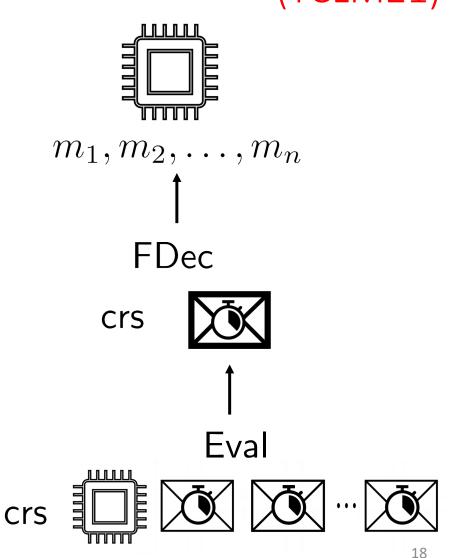
Non-Interactive Timed Commitment Publicly Verifiable Homomorphic (KLX20) (TCLM21)

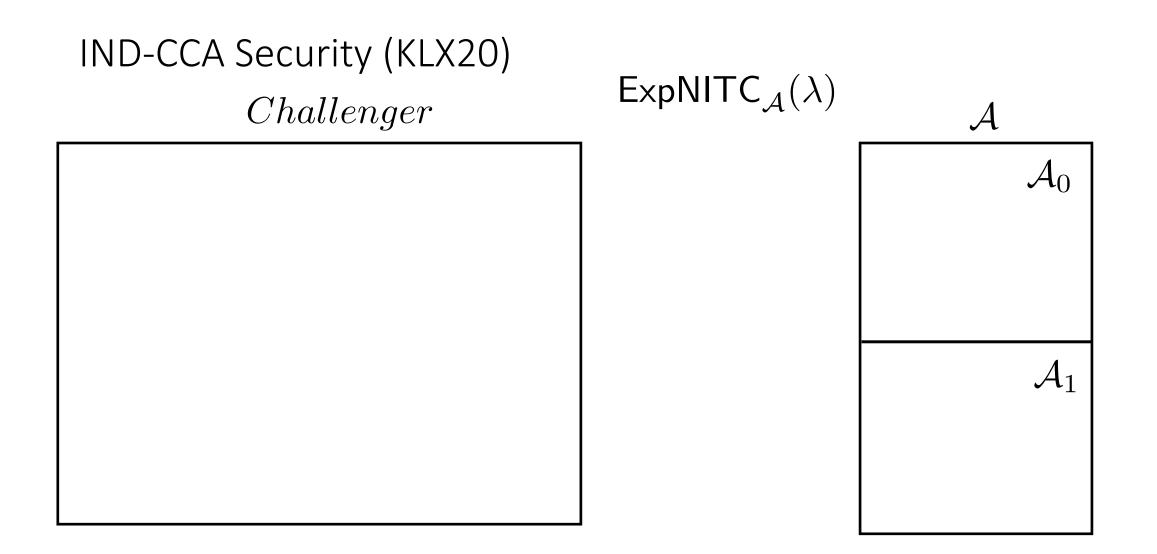
- crs \leftarrow PGen $(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \text{ComVrfy}(\text{crs}, c, \pi_{\text{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $(m, \pi_{\mathsf{FDec}}) \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T
- $0/1 \leftarrow \mathsf{FDecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{FDec}})$
- Eval

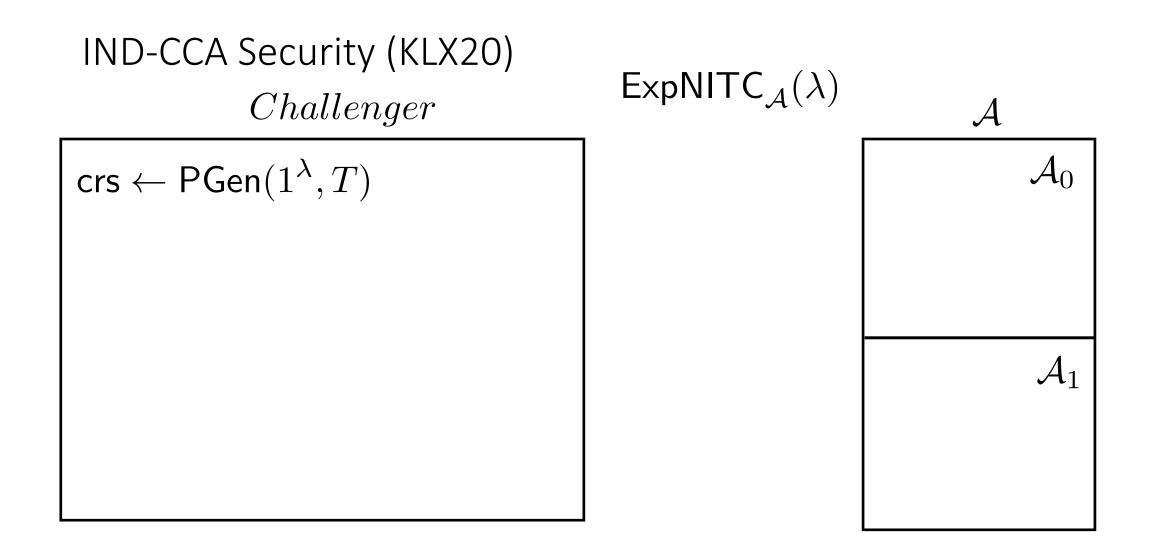


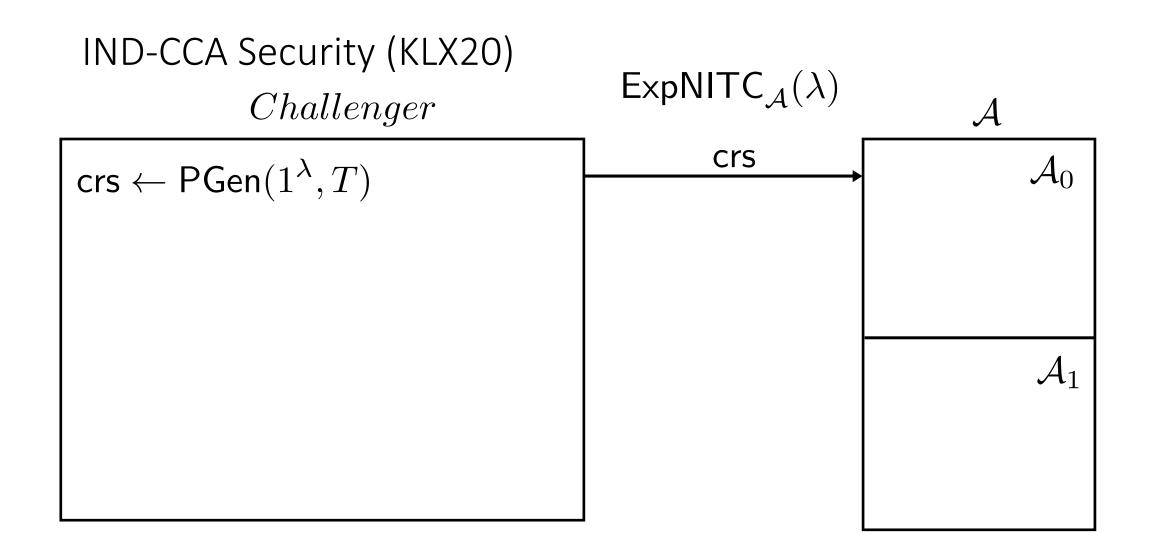
Non-Interactive Timed Commitment Publicly Verifiable Homomorphic (KLX20) (TCLM21)

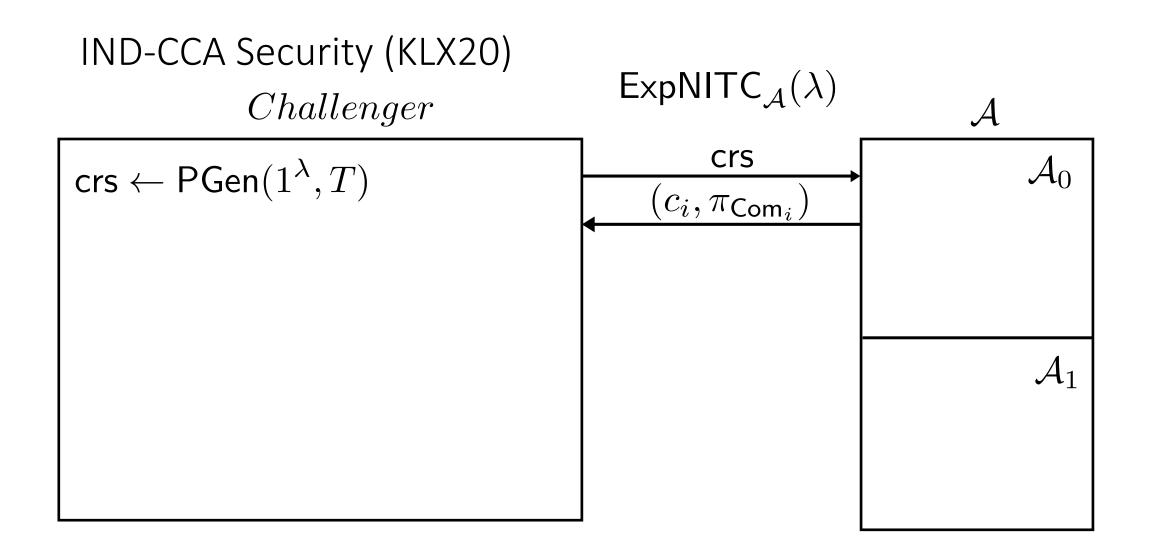
- $\operatorname{crs} \leftarrow \operatorname{PGen}(1^{\lambda}, T)$
- $(c, \pi_{\mathsf{Com}}, \pi_{\mathsf{Dec}}) \leftarrow \mathsf{Com}(\mathsf{crs}, m)$
- $0/1 \leftarrow \mathsf{ComVrfy}(\mathsf{crs}, c, \pi_{\mathsf{Com}})$
- $0/1 \leftarrow \mathsf{DecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{Dec}})$
- $(m, \pi_{\mathsf{FDec}}) \leftarrow \mathsf{FDec}(\mathsf{crs}, c)$ runtime T
- $0/1 \leftarrow \mathsf{FDecVrfy}(\mathsf{crs}, c, m, \pi_{\mathsf{FDec}})$
- Eval

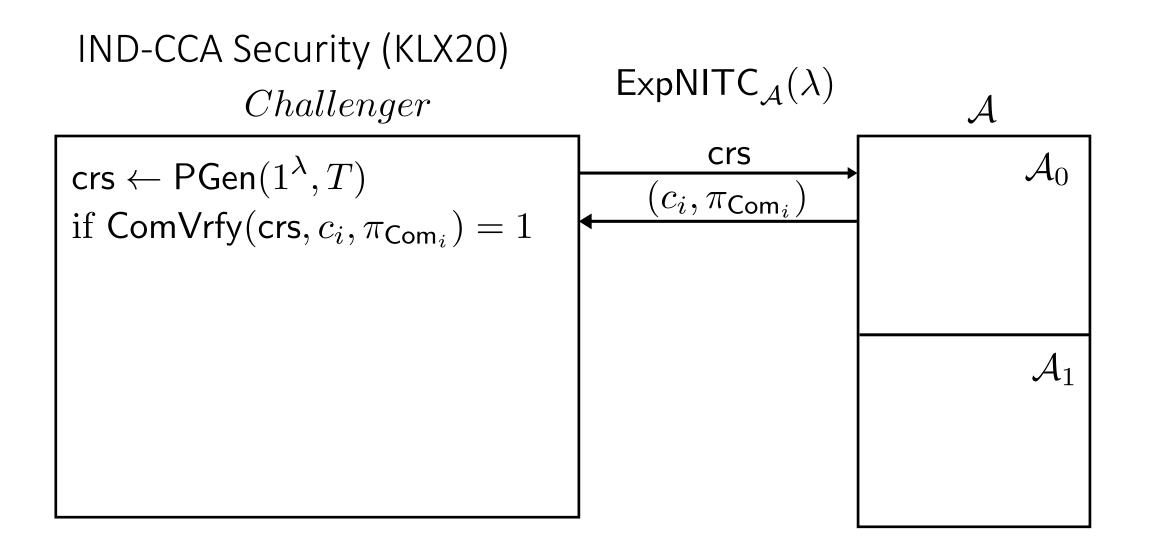


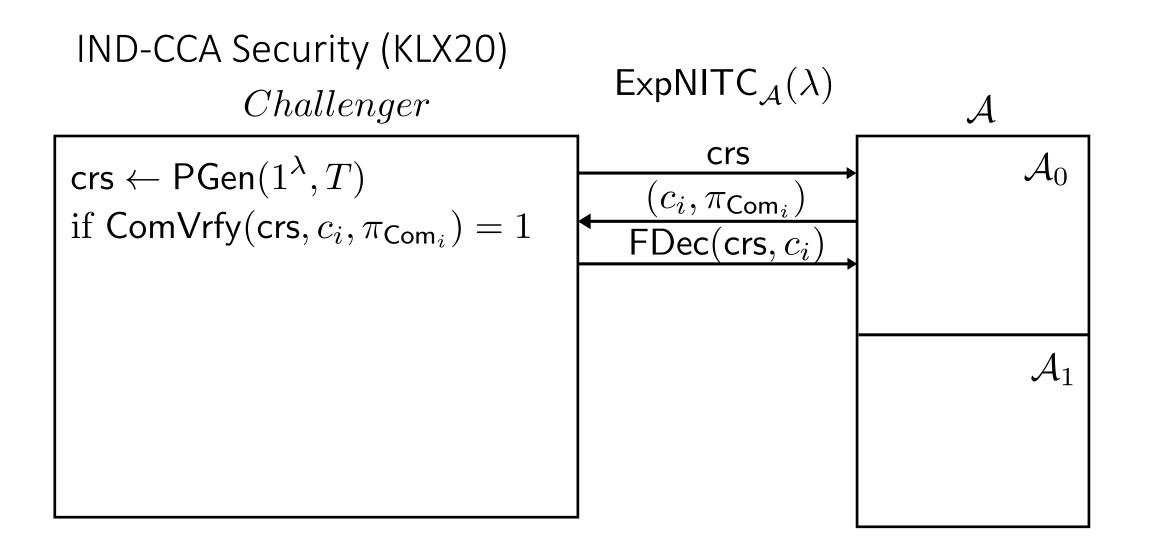


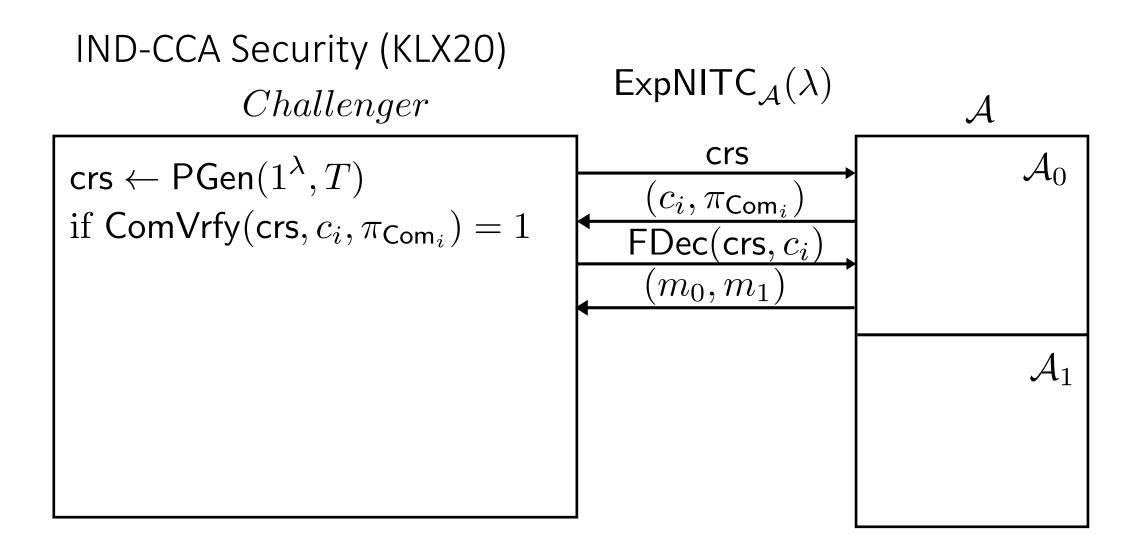


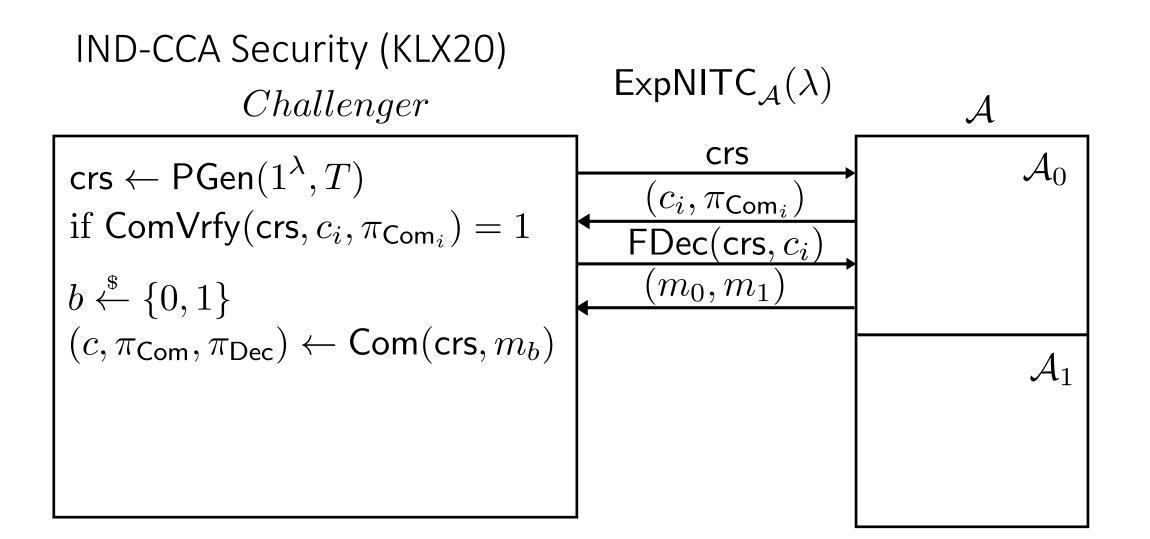


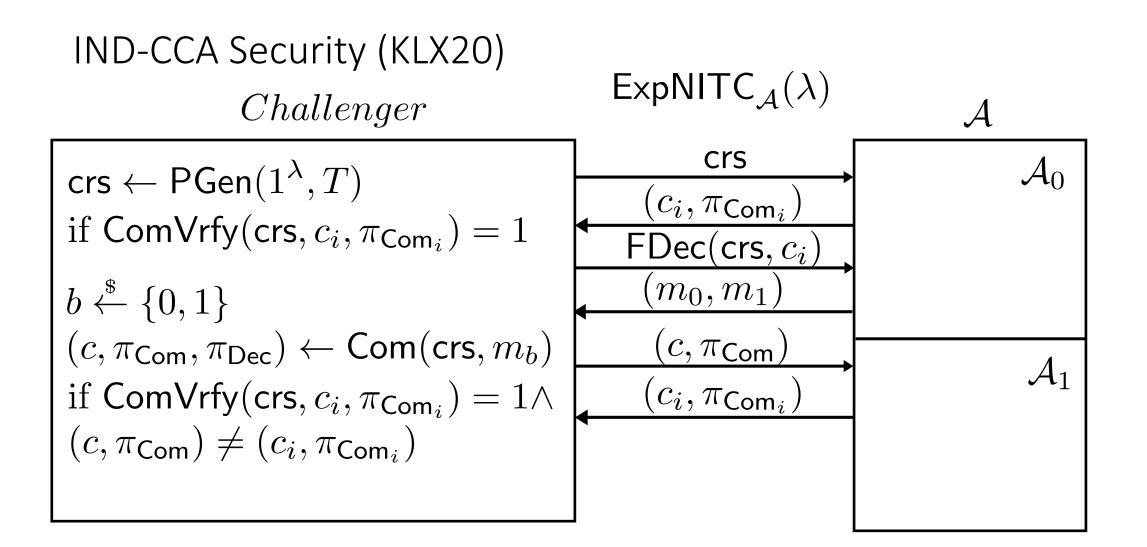


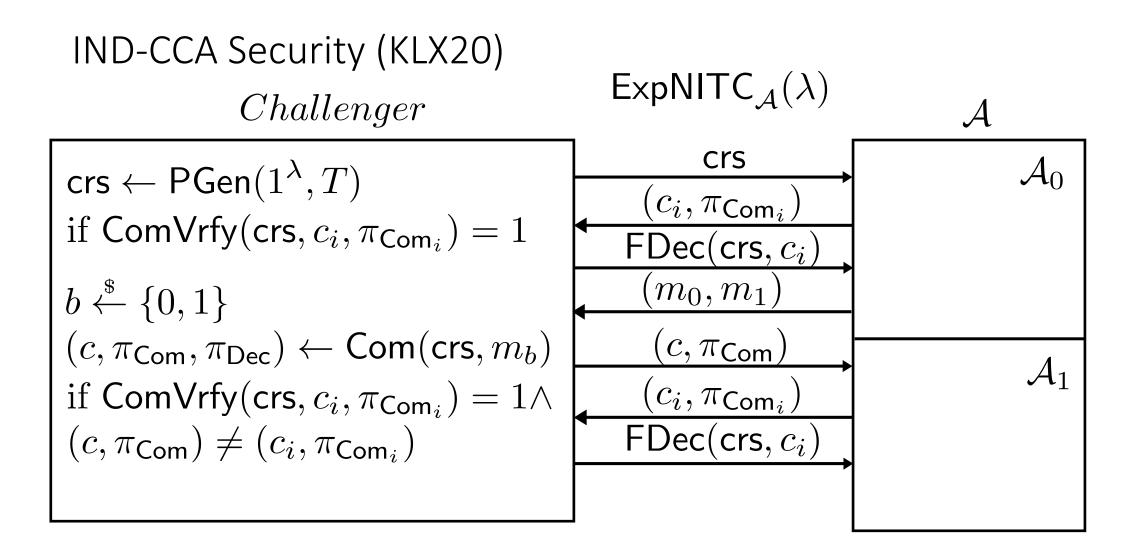


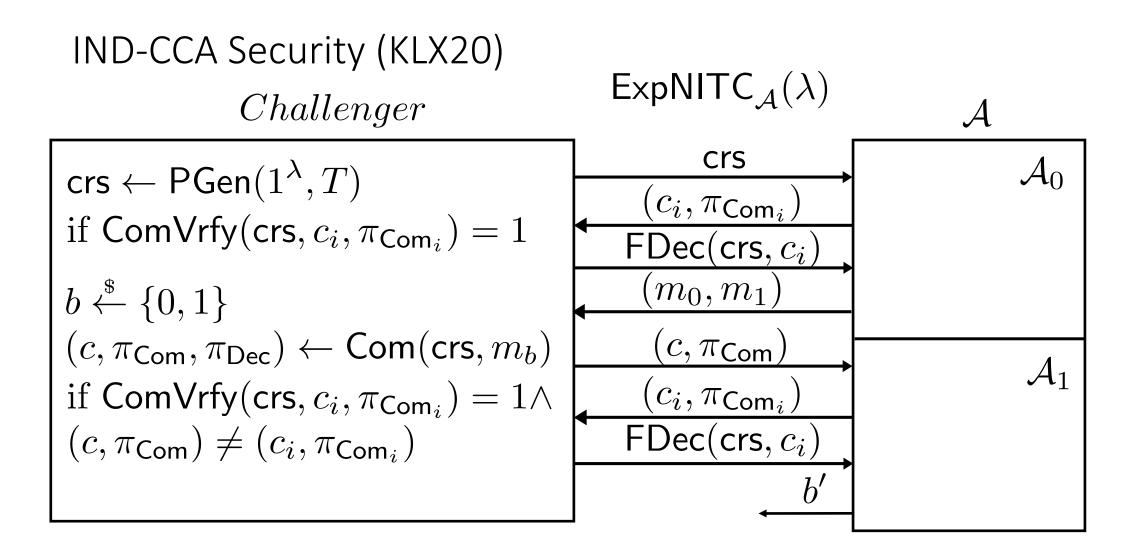


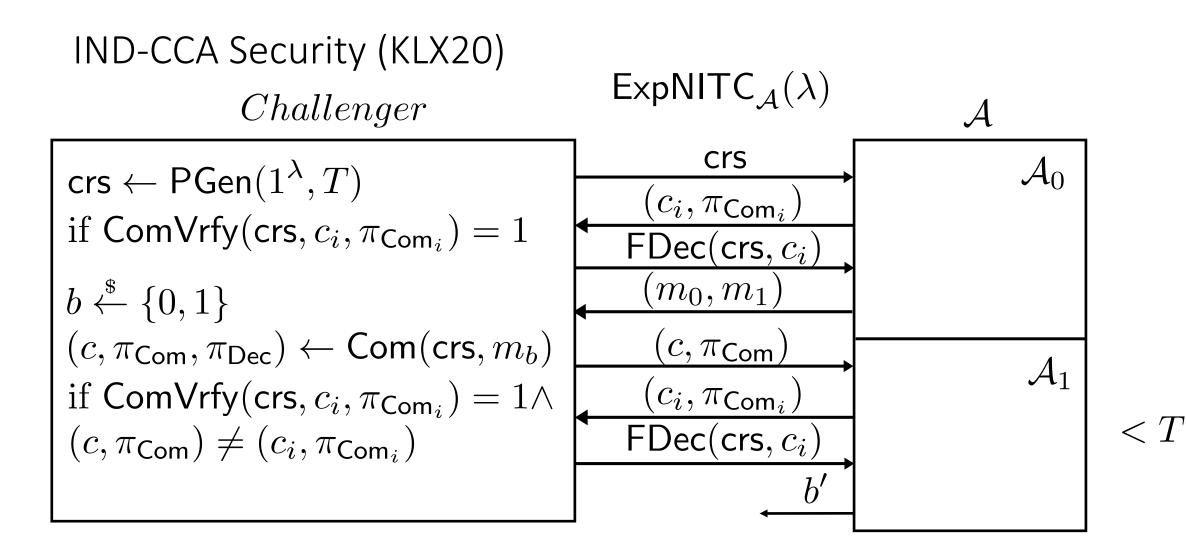


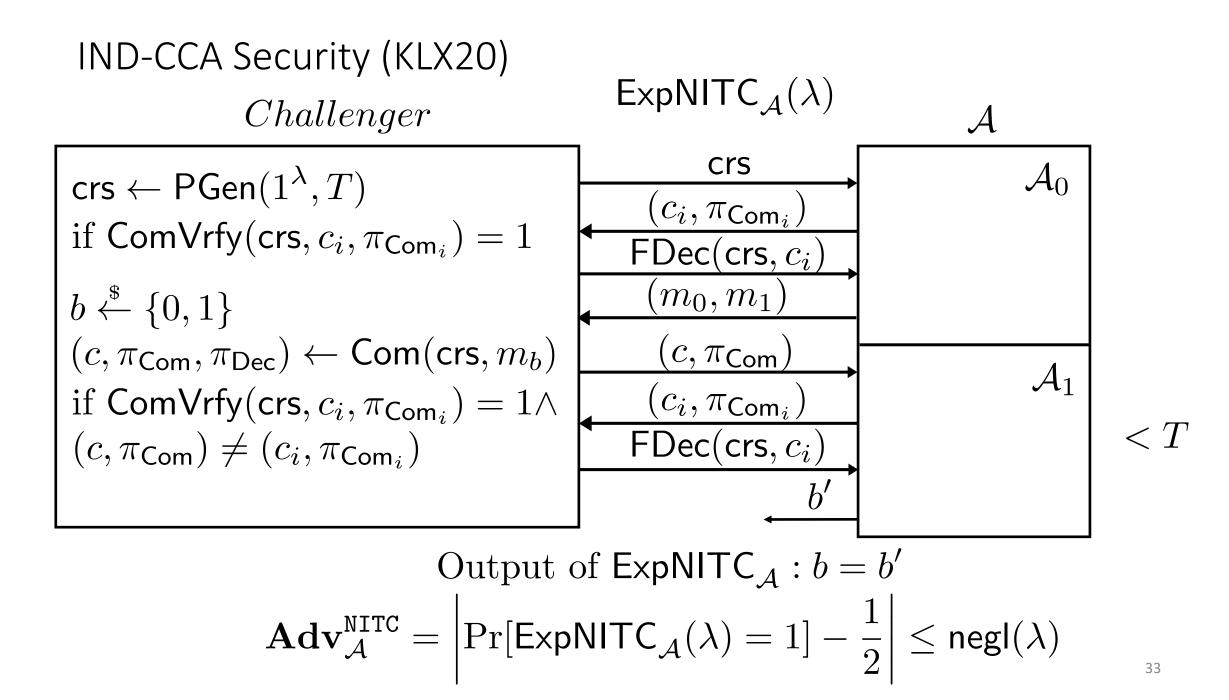












Publicly Verifiable CCA Secure PKE

Naor-Yung Paradigm (NY90)

- 2x CPA secure PKE and One-Time Simulation Sound NIZK

Publicly Verifiable CCA Secure PKE

Naor-Yung Paradigm (NY90)

- 2x CPA secure PKE and One-Time Simulation Sound NIZK

Efficient OT-SS NIZK

Publicly Verifiable CCA Secure PKE

Naor-Yung Paradigm (NY90)

- 2x CPA secure PKE and One-Time Simulation Sound NIZK

Efficient OT-SS NIZK

- Sigma Protocol

Publicly Verifiable CCA Secure PKE

Naor-Yung Paradigm (NY90)

- 2x CPA secure PKE and One-Time Simulation Sound NIZK

Efficient OT-SS NIZK

- Sigma Protocol
- Only for algebraic languages

Publicly Verifiable CCA Secure PKE

Naor-Yung Paradigm (NY90)

- 2x CPA secure PKE and One-Time Simulation Sound NIZK

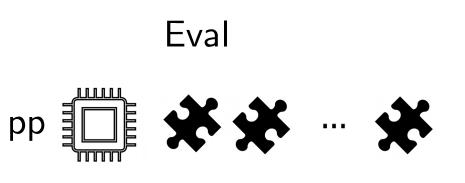
Efficient OT-SS NIZK

- Sigma Protocol
- Only for algebraic languages

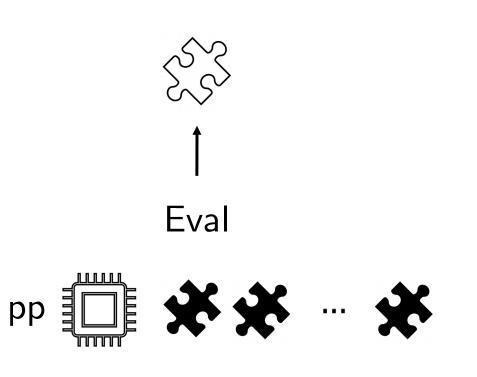
A challenge: Find a replacement to substitute PKE.

- $\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda}, T)$
- $Z \leftarrow \mathsf{Gen}(\mathsf{pp}, m)$
- $\bullet \ m \leftarrow \mathsf{Solve}(\mathsf{pp}, Z)$
- Eval

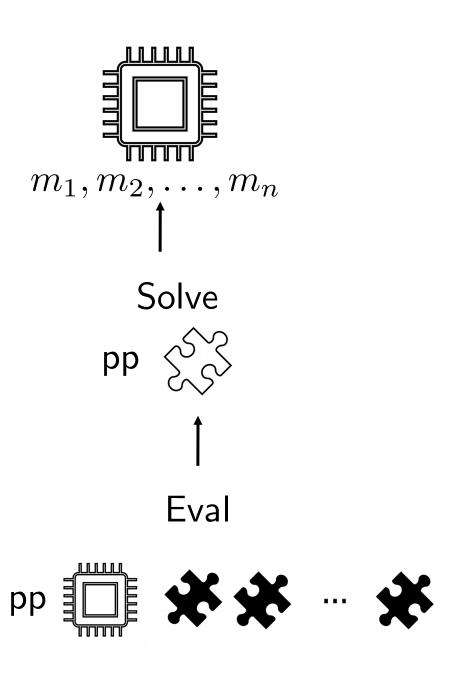
- $\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda}, T)$
- $Z \leftarrow \mathsf{Gen}(\mathsf{pp},m)$
- $m \leftarrow \mathsf{Solve}(\mathsf{pp}, Z)$
- Eval



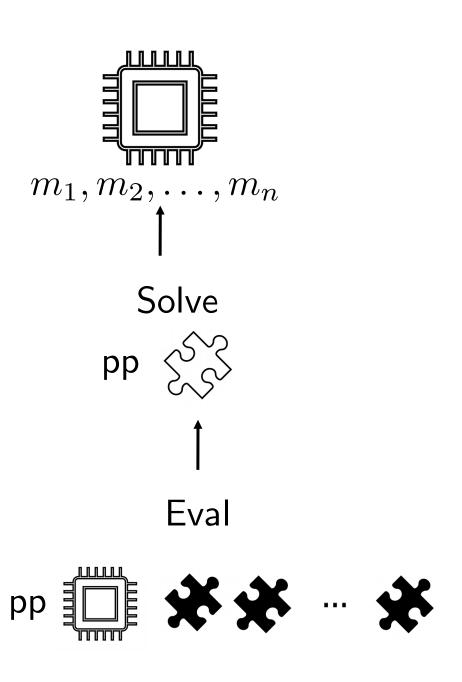
- $\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda}, T)$
- $Z \leftarrow \mathsf{Gen}(\mathsf{pp},m)$
- $m \leftarrow \mathsf{Solve}(\mathsf{pp}, Z)$
- Eval

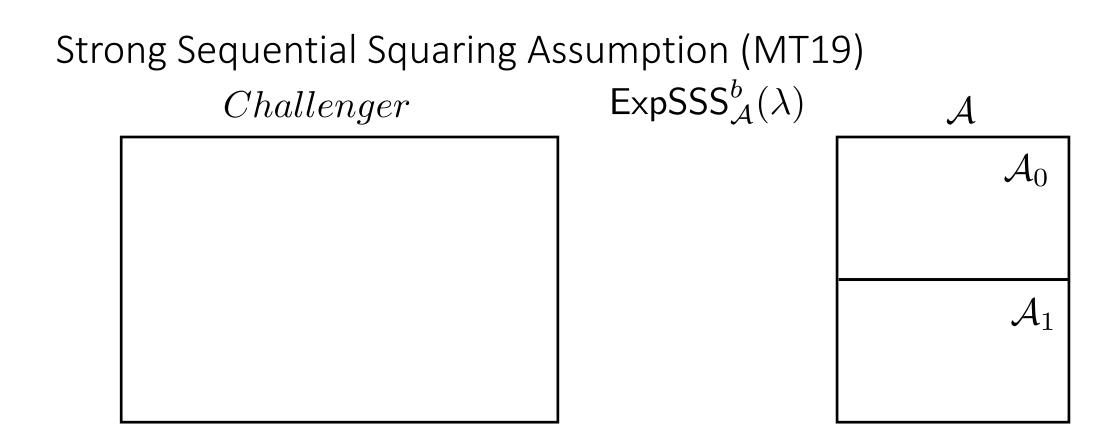


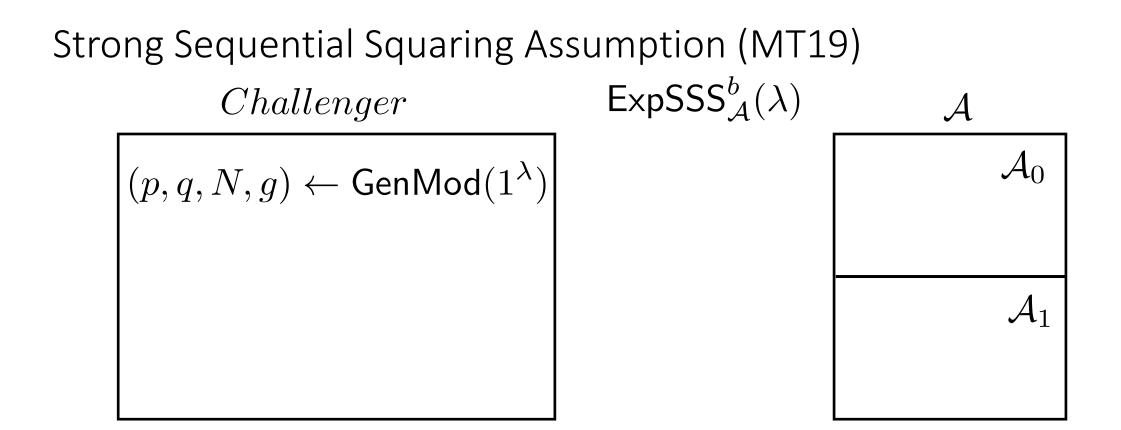
- $\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda}, T)$
- $Z \leftarrow \mathsf{Gen}(\mathsf{pp},m)$
- $m \leftarrow \mathsf{Solve}(\mathsf{pp}, Z)$
- Eval

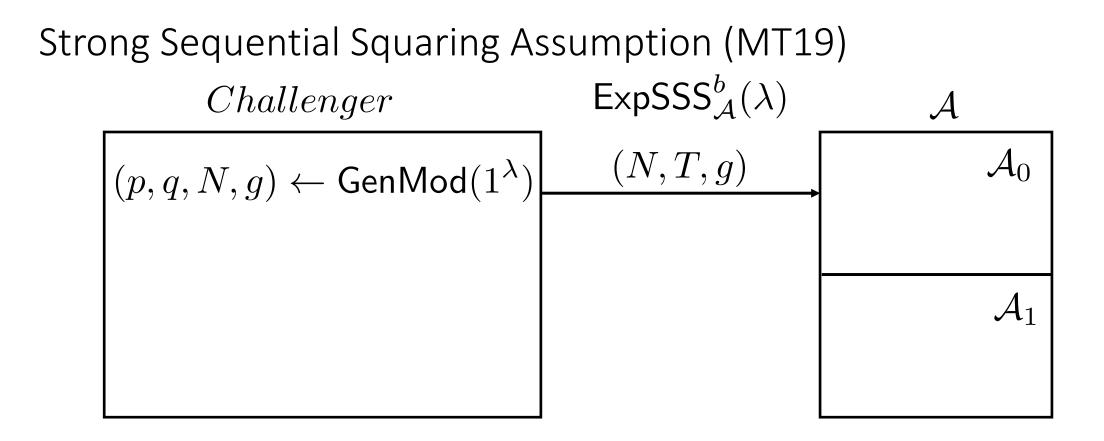


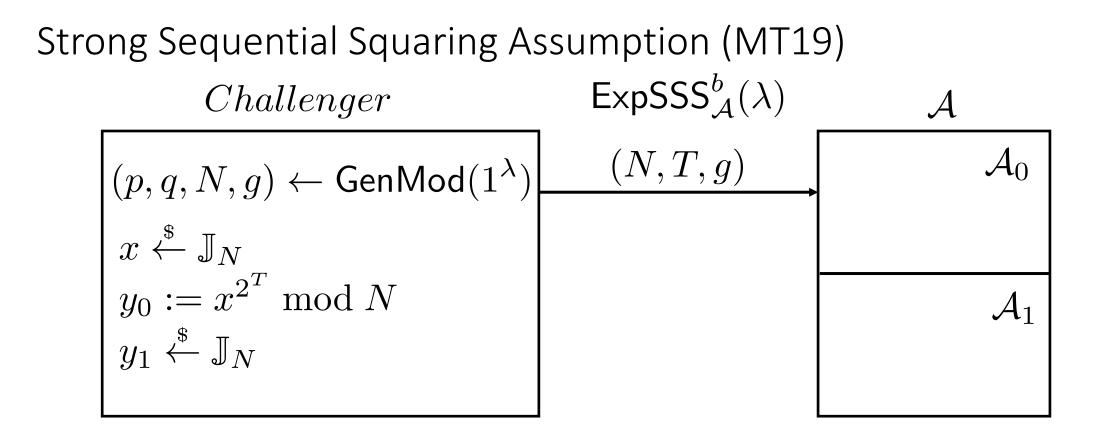
- $pp \leftarrow Setup(1^{\lambda}, T)$ PGen
- $Z \leftarrow \operatorname{Gen}(\operatorname{pp}, m)$ Com
- $\bullet \ m \leftarrow \mathsf{Solve}(\mathsf{pp}, Z) \qquad \mathsf{FDec}$
- Eval

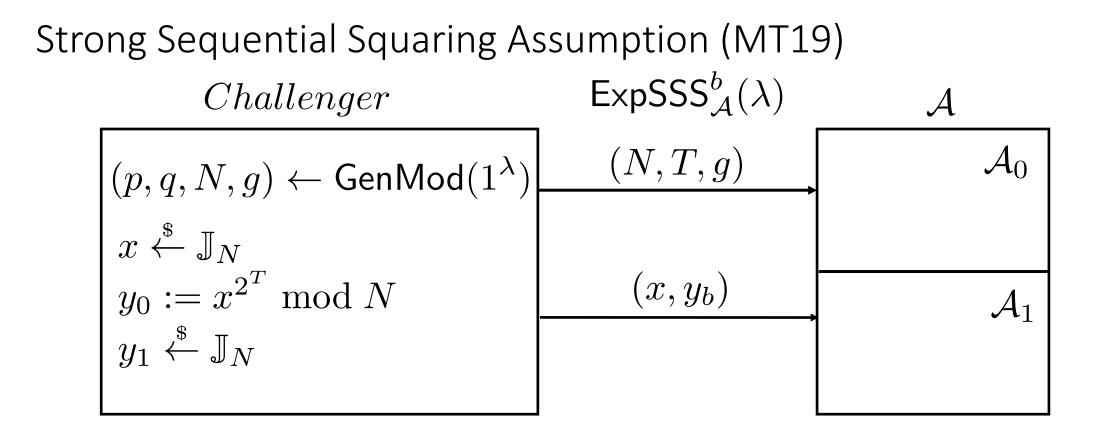


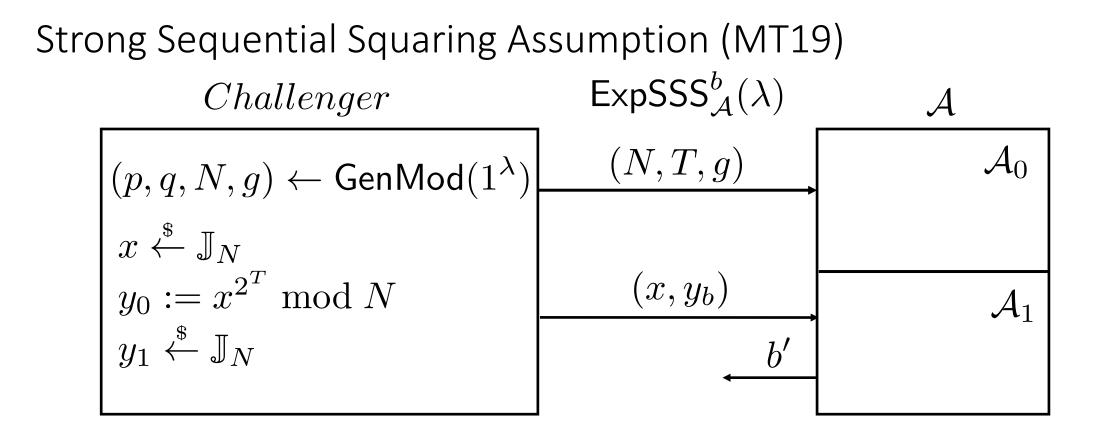


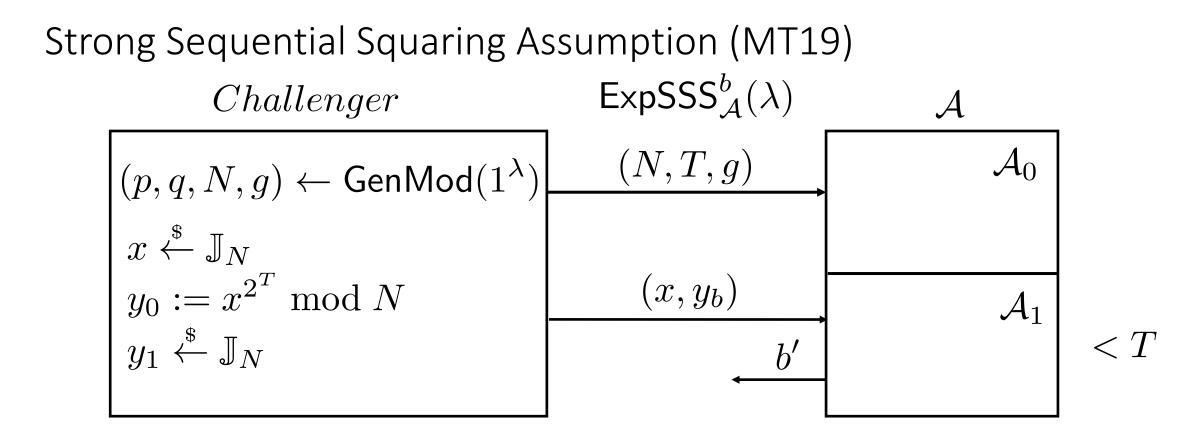


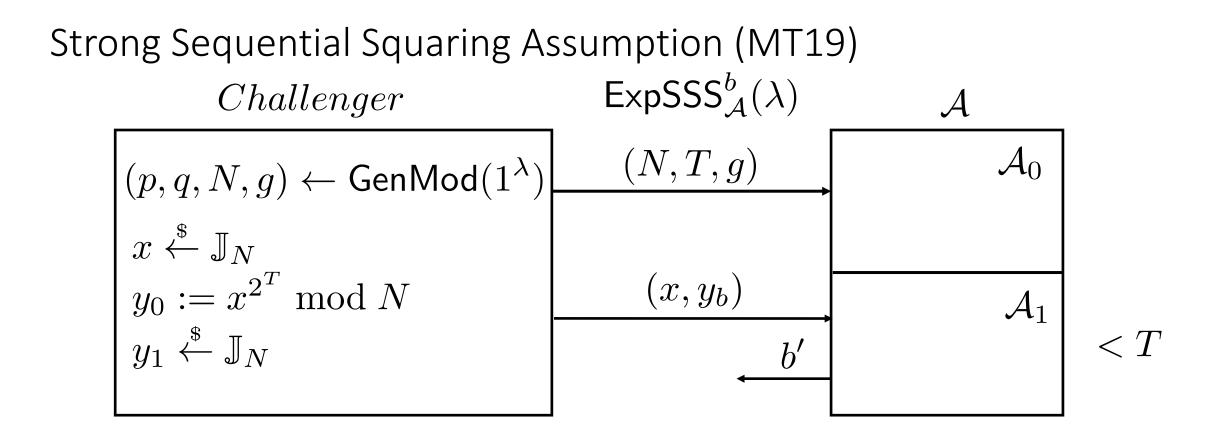












$$\mathbf{Adv}_{\mathcal{A}}^{\mathsf{SSS}} = \left| \Pr[\mathsf{ExpSSS}_{\mathcal{A}}^{0}(\lambda) = 1] - \Pr[\mathsf{ExpSSS}_{\mathcal{A}}^{1}(\lambda) = 1] \right| \le \mathsf{negl}(\lambda)$$

$$\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})$$

$$\varphi(N) := (p-1)(q-1)$$

$$t := 2^T \mod \varphi(N)/2$$

$$h := g^t \mod N$$

return $\mathsf{crs} := (N, T, g, h)$

```
\begin{array}{l} \displaystyle \frac{\mathsf{PGen}(1^{\lambda},T)}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ \varphi(N) := (p-1)(q-1) \\ t := 2^T \mod \varphi(N)/2 \\ h := g^t \mod N \\ \mathrm{return} \ \mathsf{crs} := (N,T,g,h) \end{array}
```

Paillier-like encryption

$$\frac{\text{Com}(\text{crs}, m)}{r \leftarrow [N/2]}$$

$$c_0 := g^r \mod N$$

$$c_1 := h^{rN}(1+N)^m \mod N^2$$
return (c_0, c_1)

```
\begin{aligned} &\frac{\mathsf{PGen}(1^{\lambda},T)}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ &\varphi(N) := (p-1)(q-1) \\ &t := 2^T \mod \varphi(N)/2 \\ &h := g^t \mod N \\ &\text{return } \mathsf{crs} := (N,T,g,h) \end{aligned}
```

Paillier-like encryptionFI
$$Com(crs, m)$$

 $r \leftarrow [N/2]$ g $r \leftarrow [N/2]$ y $c_0 := g^r \mod N$
 $c_1 := h^{rN}(1+N)^m \mod N^2$ return (c_0, c_1)

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

$$\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})$$

$$\varphi(N) := (p-1)(q-1)$$

$$t := 2^T \mod \varphi(N)/2$$

$$h := g^t \mod N$$

return crs := (N, T, g, h)

Paillier-like encryption
$$f$$
 $Com(crs, m)$
 $r \leftarrow [N/2]$ g $r \leftarrow [N/2]$ g $c_0 := g^r \mod N$
 $c_1 := h^{rN}(1+N)^m \mod N^2$ return (c_0, c_1)

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

Paillier-like homomorphism $\frac{\mathsf{Eval}(\mathsf{crs}, \oplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N}$ $c_1 := \prod_{i=1}^n c_{i,1} \mod N^2$ return (c_0, c_1)

$$\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})$$

$$\varphi(N) := (p-1)(q-1)$$

$$t := 2^T \mod \varphi(N)/2$$

$$h := g^t \mod N$$

return crs := (N, T, g, h)

Paillier-like encryption

$$\frac{\text{Com}(\text{crs}, m)}{r \stackrel{\$}{\leftarrow} [N/2]}$$

$$c_0 := g^r \mod N$$

$$c_1 := h^{rN} (1+N)^m \mod N^2$$
return (c_0, c_1)

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

Paillier-like homomorphism $\frac{\text{Eval}(\text{crs}, \bigoplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \\
c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \\
\text{return } (c_0, c_1)$

 $\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$ $c_1 = h_1^{rN} (1+N)^m \mod N^2$ return 1return 0

$$\begin{array}{l} \frac{\mathsf{PGen}(1^{\lambda},T)}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ \varphi(N) := (p-1)(q-1) \\ t := 2^T \mod \varphi(N)/2 \\ h := g^t \mod N \\ \mathrm{return} \ \mathsf{crs} := (N,T,g,h) \end{array}$$

Paillier-like encryption

$$\frac{\text{Com}(\text{crs}, m)}{r \leftarrow [N/2]}$$

$$c_0 := g^r \mod N$$

$$c_1 := h^{rN} (1+N)^m \mod N^2$$
return (c_0, c_1)

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

Paillier-like homomorphism $\frac{\mathsf{Eval}(\mathsf{crs}, \oplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N}$ $c_1 := \prod_{i=1}^n c_{i,1} \mod N^2$ return (c_0, c_1)

 $\begin{aligned} &\frac{\mathsf{DecVrfy}(\mathsf{crs},(c_0,c_1),m,r)}{\mathrm{if}\;c_0=g^r\;\mathrm{mod}\;N\wedge}\\ &c_1=h_1^{rN}(1+N)^m\;\mathrm{mod}\;N^2\\ &\mathrm{return}\;1\\ &\mathrm{return}\;0 \end{aligned}$

Assumptions:

- Strong Sequential Squaring
- Decisional Composite Residuosity
- Decisional Diffie-Hellman

Naor-Yung (1st Attempt) $h_1 := g_1^{t_1} \mod N_1$ $\frac{\text{Com}_1(\text{crs}_1, m)}{r_1 \stackrel{\$}{\leftarrow} [N_1/2]}$ $c_0 := g_1^{r_1} \mod N_1$ $c_1 := h_1^{r_1N_1}(1 + N_1)^m \mod N_1^2$ return (c_0, c_1)

$$h_{2} := g_{2}^{t_{2}} \mod N_{2}$$

$$\frac{\text{Com}_{2}(\text{crs}_{2}, m)}{r_{2} \stackrel{\$}{\leftarrow} [N_{2}/2]}$$

$$c_{0}' := g_{2}^{r_{2}} \mod N_{2}$$

$$c_{1}' := h_{2}^{r_{2}N_{2}}(1 + N_{2})^{m} \mod N_{2}^{2}$$
return (c_{0}', c_{1}')

Naor-Yung (1 st Attempt)	
$h_1 := g_1^{t_1} \bmod N_1$	$h_2 := g_2^{t_2} \mod N_2$
$Com_1(crs_1,m)$	$\underline{Com_2(crs_2,m)}$
$\overline{r_1 \xleftarrow{\hspace{0.1cm}} [N_1/2]}$	$r_2 \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} [N_2/2]$
$c_0 := g_1^{r_1} \mod N_1$	$c'_0 := g_2^{r_2} \mod N_2$
$c_1 := h_1^{r_1 N_1} (1 + N_1)^m \mod N_1^2$	$c'_1 := h_2^{r_2 N_2} (1 + N_2)^m \mod N_2^2$
return (c_0, c_1)	return (c'_0, c'_1)

Proving that commitments contain the same message using the standard Sigma protocol $\Rightarrow N_1 = N_2$.

Game	Dec. Queries	Proof	HTLP_1	$HTLP_2$	Assumption
0	FDec	Real	m_b	m_b	

Game	Dec. Queries	Proof	HTLP_1	$HTLP_2$	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK

Game	Dec. Queries	Proof	HTLP_1	HTLP_2	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK
2	t_1	Simul	m_b	m_b	ZK of NIZK

Game	Dec. Queries	Proof	\mathtt{HTLP}_1	\mathtt{HTLP}_2	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK
2	t_1	Simul	m_b	m_b	ZK of NIZK
3	t_1	Simul	m_b	m	Sec of HTLP

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Game	Dec. Queries	Proof	\mathtt{HTLP}_1	$HTLP_2$	Assumption
$2 \qquad t_1 \qquad Simul \qquad m_b \qquad m_b \qquad ZK \text{ of NIZK}$	0	FDec	Real	m_b	m_b	
	1	t_1	Real	m_b	m_b	Snd of NIZK
3 t_1 Simul m_1 Sec of HTLP	2	t_1	Simul	m_b	m_b	ZK of NIZK
0 0	3	t_1	Simul	m_b	m	Sec of HTLP

 $t_1 := 2^T \bmod \varphi(N)/2$

Game	Dec. Queries	Proof	$ $ HTLP $_1$	$ $ HTLP $_2$	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK
2	t_1	Simul	m_b	m_b	ZK of NIZK
3	t_1	Simul	m_b	m	Sec of HTLP
$t_1 := 2^T \bmod \varphi(N)/2$					SSS
				DCR	
			DDH		

Game	Dec. Queries	Proof	\mathtt{HTLP}_1	\mathtt{HTLP}_2	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK
2	t_1	Simul	m_b	m_b	ZK of NIZK
3	t_1	Simul	m_b	m	Sec of HTLP
	$t_1 := 2^T \bmod \varphi$		SSS		

DCR

DDH

Game	Dec. Queries	Proof	\mathtt{HTLP}_1	$HTLP_2$	Assumption
0	FDec	Real	m_b	m_b	
1	t_1	Real	m_b	m_b	Snd of NIZK
2	t_1	Simul	m_b	m_b	ZK of NIZK
3	t_1	Simul	m_b	m	Sec of HTLP
	$t_1 := 2^T \mod \varphi$	•	•	SSS DCR DDH	

Knowing the factorization of *N* does not allow to reduce to SSS!

 $\begin{array}{l} \displaystyle \frac{\mathsf{PGen}(1^{\lambda},T)}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ \varphi(N) := (p-1)(q-1) \\ t := 2^T \mod \varphi(N)/2 \\ h = g^t \mod N \\ \mathrm{return} \ \mathsf{pp} := (N,T,g,h) \end{array}$

$$\frac{\operatorname{Com}(\operatorname{crs}, m)}{r \xleftarrow{\hspace{0.1cm}}{\stackrel{\$}{\leftarrow}} [N/2]} \\
c_0 := g^r \mod N \\
c_1 := h^{rN} (1+N)^m \mod N^2 \\
\operatorname{return} (c_0, c_1)$$

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

$$\frac{\mathsf{Eval}(\mathsf{crs}, \oplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \quad \frac{\mathsf{I}}{\mathsf{i}} \\ c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \quad \mathbf{c} \\ \mathsf{return} \ (c_0, c_1) \quad \mathbf{c} \\ \end{aligned}$$

$$\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$$
$$c_1 = h_1^{rN} (1+N)^m \mod N^2$$
$$\text{return } 1$$
$$\text{return } 0$$

$$\begin{aligned} & \frac{\mathsf{Setup}(1^{\lambda})}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ & \varphi(N) := (p-1)(q-1) \\ & t \xleftarrow{\$} [N/2] \\ & h = g^t \bmod N \\ & \text{return } \mathsf{pk} = (N,g,h), \mathsf{sk} := t \end{aligned}$$

$$\frac{\operatorname{Com}(\operatorname{crs}, m)}{r \stackrel{\$}{\leftarrow} [N/2]} \\
c_0 := g^r \mod N \\
c_1 := h^{rN} (1+N)^m \mod N^2 \\
\operatorname{return} (c_0, c_1)$$

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} (\mod N^2) - 1}{N}$

 $\frac{\mathsf{Eval}(\mathsf{crs}, \bigoplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \\
c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \\
\operatorname{return} (c_0, c_1)$

$$\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$$
$$c_1 = h_1^{rN} (1+N)^m \mod N^2$$
$$\text{return } 1$$
$$\text{return } 0$$

$$\begin{aligned} & \underbrace{\mathsf{Setup}(1^{\lambda})}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ & \varphi(N) := (p-1)(q-1) \\ & t \xleftarrow{} [N/2] \\ & h = g^t \bmod N \\ & \text{return } \mathsf{pk} = (N,g,h), \mathsf{sk} := t \end{aligned}$$

$$\frac{\mathsf{Enc}(\mathsf{pk}, m)}{r \xleftarrow{\$} [N/2]}$$

$$c_0 := g^r \mod N$$

$$c_1 := h^{rN} (1+N)^m \mod N^2$$
return (c_0, c_1)

$$\frac{\mathsf{FDec}(\mathsf{crs}, (c_0, c_1))}{y := c_0^{2^T} \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

 $\frac{\mathsf{Eval}(\mathsf{crs}, \oplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \\
c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \\
\operatorname{return} (c_0, c_1)$

$$\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$$
$$c_1 = h_1^{rN} (1+N)^m \mod N^2$$
$$\text{return } 1$$
$$\text{return } 0$$

$$\begin{aligned} &\frac{\mathsf{Setup}(1^{\lambda})}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) \\ &\varphi(N) := (p-1)(q-1) \\ &t \xleftarrow{\$} [N/2] \\ &h = g^t \bmod N \\ &\text{return } \mathsf{pk} = (N,g,h), \mathsf{sk} := t \end{aligned}$$

$$\frac{\mathsf{Enc}(\mathsf{pk}, m)}{r \xleftarrow{\$} [N/2]}$$

$$c_0 := g^r \mod N$$

$$c_1 := h^{rN} (1+N)^m \mod N^2$$
return (c_0, c_1)

$$\frac{\mathsf{Dec}(\mathsf{sk} = t, (c_0, c_1))}{y := c_0^t \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

 $\frac{\mathsf{Eval}(\mathsf{crs}, \oplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \\ c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \\ \mathsf{return} \ (c_0, c_1)$

$$\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$$
$$c_1 = h_1^{rN} (1+N)^m \mod N^2$$
$$\text{return } 1$$
$$\text{return } 0$$

$$\begin{array}{ll} \displaystyle \underbrace{\mathsf{Setup}(1^{\lambda})}{(p,q,N,g)} \leftarrow \mathsf{GenMod}(1^{\lambda}) & \underbrace{\mathsf{End}}{r \notin} \\ \varphi(N) := (p-1)(q-1) & c_0 : \\ t \xleftarrow{} [N/2] & c_1 : \\ h = g^t \bmod N & \text{return} \\ \mathsf{return} \ \mathsf{pk} = (N,g,h), \mathsf{sk} := t \end{array}$$

$$\frac{\mathsf{Dec}(\mathsf{sk} = t, (c_0, c_1))}{y := c_0^t \mod N}$$

return $\frac{c_1 \cdot y^{-N} \pmod{N^2} - 1}{N}$

 $\frac{\mathsf{Eval}(\mathsf{crs}, \bigoplus_N, (c_{i,0}, c_{i,1})_{i \in [n]})}{c_0 := \prod_{i=1}^n c_{i,0} \mod N} \\
c_1 := \prod_{i=1}^n c_{i,1} \mod N^2 \\
\operatorname{return} (c_0, c_1)$

$$\frac{\mathsf{DecVrfy}(\mathsf{crs}, (c_0, c_1), m, r)}{\text{if } c_0 = g^r \mod N \land}$$
$$c_1 = h_1^{rN} (1+N)^m \mod N^2$$
$$\text{return 1}$$
$$\text{return 0}$$

Assumptions:

• Decisional Composite

Residuosity

• Decisional Diffie-Hellman

Naor-Yung (2 nd Attempt)
$h_1 := g_1^k \bmod N$
$\underline{Enc}(pk,m)$
$r_1 \xleftarrow{\hspace{0.1in}} [N]$
$c_0 := g_1^{r_1} \mod N$
$c_1 := h_1^{r_1 N} (1+N)^m \bmod N^2$
return (c_0, c_1)

$$\begin{split} h_2 &:= g_2^t \bmod N \\ \frac{\mathsf{Com}(\mathsf{crs}_2, m)}{r_2 \stackrel{\$}{\leftarrow} [N/2]} \\ c_0' &:= g_2^{r_2} \bmod N \\ c_1' &:= h_2^{r_2N} (1+N)^m \bmod N^2 \\ \mathrm{return} \ (c_0', c_1') \end{split}$$

Naor-Yung (2 nd Attempt)
$h_1 := g_1^k \bmod N$
$\underline{Enc}(pk,m)$
$r_1 \xleftarrow{\hspace{0.1in}} [N]$
$c_0 := g_1^{r_1} \mod N$
$c_1 := h_1^{r_1 N} (1+N)^m \mod N^2$
return (c_0, c_1)

$$\begin{split} h_2 &:= g_2^t \bmod N \\ \frac{\text{Com}(\text{crs}_2, m)}{r_2 \xleftarrow{\$} [N/2]} \\ c_0' &:= g_2^{r_2} \bmod N \\ c_1' &:= h_2^{r_2 N} (1+N)^m \bmod N^2 \\ \text{return } (c_0', c_1') \end{split}$$

$$t := 2^T \bmod \varphi(N)/2$$

Knowing the factorization of *N* does not allow to reduce to DCR!

Triple Naor-Yung $h_{1} := g_{1}^{k_{1}} \mod N$ $\frac{\mathsf{Enc}_{1}(\mathsf{pk}_{1}, m)}{r_{1} \stackrel{\$}{\leftarrow} [N]}$ $c_{0} := g_{1}^{r_{1}} \mod N$ $c_{1} := h_{1}^{r_{1}N} (1+N)^{m} \mod N^{2}$ return (c_{0}, c_{1})

$$\begin{aligned} h_2 &:= g_2^{k_2} \mod N \\ \frac{\mathsf{Enc}_2(\mathsf{pk}_2, m)}{r_2 \stackrel{\$}{\leftarrow} [N]} \\ c_0' &:= g_2^{r_2} \mod N \\ c_1' &:= h_2^{r_2 N} (1+N)^m \mod N^2 \\ \operatorname{return} \ (c_0', c_1') \end{aligned}$$

$$h_3 := g_3^t \mod N$$

$$\frac{\operatorname{Com}(\operatorname{crs}, m)}{r_3 \stackrel{\hspace{0.1em} \leftarrow}{\leftarrow} [N/2]}$$

$$c_0'' := g_3^{r_3} \mod N$$

$$c_1'' := h_3^{r_3N} (1+N)^m \mod N^2$$
return (c_0'', c_1'')

Triple Naor-Yung

Game	Dec. Queries	Proof	PKE_1	$ $ PKE $_2$	HTLP	Assumption
0	FDec	Real	m_b	m_b	m_b	
1	k_1	Real	m_b	m_b	m_b	Snd of NIZK
2	k_1	Simul	m_b	m_b	m_b	ZK of NIZK
3	k_1	Simul	m_b	m_b	m	Sec of HTLP
4	k_1	Simul	m_b	m	$\mid m$	Sec of PKE_2

Triple Naor-Yung

Game	Dec. Queries	Proof	PKE_1	PKE_2	HTLP	Assumption
0	FDec	Real	m_b	m_b	m_b	
1	k_1	Real	m_b	m_b	m_b	Snd of NIZK
2	k_1	Simul	m_b	m_b	m_b	ZK of NIZK
3	k_1	Simul	m_b	m_b	m	Sec of HTLP
4	k_1	Simul	m_b	m	m	Sec of PKE_2
5	k_2	Simul	m_b	m	m	OT-SimSnd
6	k_2	Simul	m	$\mid m$	$\mid m$	Sec of PKE_1

Shrinking CRS and Commitment Size - BMV16

crs	Commitment
g_1	$g_1^{r_1}$
$h_1 := g_1^{k_1}$	$h_1^{r_1N}(1+N)^m$
g_2	$g_{2}^{r_{2}}$
$h_2 := g_2^{k_2}$	$h_2^{r_2N}(1+N)^m$
g_3	$g_3^{\overline{r_3}}$
$h_3 := g_3^t$	$h_3^{r_3N}(1+N)^m$

Shrinking CRS and Commitment Size - BMV16

Crs	Commitment	
g_1	$g_1^{r_1}$	
$h_1 := g_1^{k_1}$	$h_1^{r_1N}(1+N)^m$	
g_2	$g_2^{r_2}$	
$h_2 := g_2^{k_2}$	$h_{2}^{r_{2}N}(1+N)^{m}$	
g_3	$g_{3}^{r_{3}}$	
$h_3 := g_3^t$	$h_{3}^{r_{3}N}(1+N)^{m}$	

crs	Commitment
g	g^r
$h_1 := g^{k_1}$	$h_1^{rN}(1+N)^m$
$h_2 := g^{k_2}$	$h_2^{rN}(1+N)^m$
$h_3 := g^t$	$h_3^{rN}(1+N)^m$

Shrinking CRS and Commitment Size - BMV16

crs	Commitment	CrS	Commitment
g_1	$\mid g_1^{r_1}$	g	g^r
$h_1 := g_1^{k_1}$	$h_1^{r_1N}(1+N)^m$	$h_1 := g_{.}^{k_1}$	$h_{1}^{rN}(1+N)^{m}$
g_2	$g_{2}^{r_{2}}$	$h_2 := g^{k_2}$	
$h_2 := g_2^{k_2}$	$h_{2}^{r_{2}N}(1+N)^{m}$	$h_3 := g^t$	$h_3^{rN}(1+N)^m$
g_3	$g_{3}^{r_{3}}$		
$h_3 := g_3^t$	$h_{3}^{r_{3}N}(1+N)^{m}$		

One-Time Simulation Sound NIZK

$$L = \left\{ (c_0, c_1, c_2, c_3) | \exists (m, r) : \frac{(\wedge_{i=1}^3 c_i = h_i^{rN} (1+N)^m \mod N^2) \wedge}{c_0 = g^r \mod N} \right\}$$

Construction of Linearly Homomorphic PVNITC

```
\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})

\varphi(N) := (p-1)(q-1)

k_1, k_2 \stackrel{\$}{\leftarrow} [N/2]

t := 2^T \mod \varphi(N)/2

For i \in [2] : h_i := g^{k_i} \mod N

h_3 := g^t \mod N

\mathsf{crs}_{\mathsf{NIZK}} \leftarrow \mathsf{NIZK}.\mathsf{Setup}(1^{\lambda}, L)

return \mathsf{crs} := (N, T, g, h_1, h_2, h_3, \mathsf{crs}_{\mathsf{NIZK}})
```

Construction of Linearly Homomorphic PVNITC

$$\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})$$

$$\varphi(N) := (p-1)(q-1)$$

$$k_1, k_2 \stackrel{\$}{\leftarrow} [N/2]$$

$$t := 2^T \mod \varphi(N)/2$$

For $i \in [2] : h_i := g^{k_i} \mod N$

$$h_3 := g^t \mod N$$

$$\mathsf{crs}_{\mathsf{NIZK}} \leftarrow \mathsf{NIZK}.\mathsf{Setup}(1^{\lambda}, L)$$

return $\mathsf{crs} := (N, T, g, h_1, h_2, h_3, \mathsf{crs}_{\mathsf{NIZK}})$

 $\frac{\operatorname{Com}(\operatorname{crs}, m)}{r \stackrel{\$}{\leftarrow} [N/2]} \\
c_0 := g^r \mod N \\
\operatorname{For} i \in [3] : c_i := h_i^{rN} (1+N)^m \mod N^2 \\
c := (c_0, c_1, c_2, c_3), w := (m, r) \\
\pi_{\operatorname{Com}} \leftarrow \operatorname{NIZK.Prove}(\operatorname{crs}_{\operatorname{NIZK}}, c, w) \\
\pi_{\operatorname{Dec}} := r \\
\operatorname{return} (c, \pi_{\operatorname{Com}}, \pi_{\operatorname{Dec}})$

Construction of Linearly Homomorphic PVNITC

 $\frac{\mathsf{PGen}(1^{\lambda}, T)}{(p, q, N, g)} \leftarrow \mathsf{GenMod}(1^{\lambda})$ $\varphi(N) := (p-1)(q-1)$ $k_1, k_2 \stackrel{\$}{\leftarrow} [N/2]$ $t := 2^T \mod \varphi(N)/2$ For $i \in [2] : h_i := g^{k_i} \mod N$ $h_3 := g^t \mod N$ $\mathsf{crs}_{\mathsf{NIZK}} \leftarrow \mathsf{NIZK}.\mathsf{Setup}(1^{\lambda}, L)$ return $\mathsf{crs} := (N, T, g, h_1, h_2, h_3, \mathsf{crs}_{\mathsf{NIZK}})$ $\frac{\operatorname{Com}(\operatorname{crs}, m)}{r \stackrel{\$}{\leftarrow} [N/2]} \\
c_0 := g^r \mod N \\
\operatorname{For} i \in [3] : c_i := h_i^{rN} (1+N)^m \mod N^2 \\
c := (c_0, c_1, c_2, c_3), w := (m, r) \\
\pi_{\operatorname{Com}} \leftarrow \operatorname{NIZK.Prove}(\operatorname{crs}_{\operatorname{NIZK}}, c, w) \\
\pi_{\operatorname{Dec}} := r \\
\operatorname{return} (c, \pi_{\operatorname{Com}}, \pi_{\operatorname{Dec}})$

ComVrfy, DecVrfy, FDec, FDecVrfy, Eval

Conclusion/Comparison to Prior Work

Construction	Hom.	Std.	Setup	Com?	FDec?	Com	π _{com}	t _{com}	Tight
EFKP20	-	×	-	×	~	O(1)	-	$O(\log T)$	~
KLX20	-	~	priv.	~	×	O(1)	O(1)	O(T)	~
TCLM21	lin.	×	pub.	~	×	$O(\lambda)$	$O(\lambda)$	O(1)	×
Our work	lin.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	mult.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	lin.	×	priv.	✓	~	O(1)	O(1)	O(1)	~
Our work	mult.	×	priv.	~	~	O(1)	O(1)	O(1)	✓

Conclusion/Comparison to Prior Work

Construction	Hom.	Std.	Setup	Com?	FDec?	Com	π _{com}	t _{com}	Tight
EFKP20	-	×	-	×	~	O(1)	-	$O(\log T)$	~
KLX20	-	~	priv.	~	×	O(1)	O(1)	O(T)	~
TCLM21	lin.	×	pub.	~	×	$O(\lambda)$	$O(\lambda)$	O(1)	×
Our work	lin.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	mult.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	lin.	×	priv.	✓	~	O(1)	O(1)	O(1)	~
Our work	mult.	×	priv.	✓	~	O(1)	O(1)	O(1)	✓

• Full paper https://eprint.iacr.org/2022/1498 • Contact: chvojka.p@gmail.com

Conclusion/Comparison to Prior Work

Construction	Hom.	Std.	Setup	Com?	FDec?	Com	π _{com}	t _{com}	Tight
EFKP20	-	×	-	×	~	O(1)	-	$O(\log T)$	~
KLX20	-	~	priv.	~	×	O(1)	O(1)	O(T)	~
TCLM21	lin.	×	pub.	✓	×	$O(\lambda)$	$O(\lambda)$	O(1)	×
Our work	lin.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	mult.	~	priv.	~	~	O(1)	$O(\log \lambda)$	O(1)	~
Our work	lin.	×	priv.	✓	~	O(1)	O(1)	O(1)	~
Our work	mult.	×	priv.	✓	✓	O(1)	O(1)	O(1)	~

• Full paper https://eprint.iacr.org/2022/1498 • Contact: chvojka.p@gmail.com Thank you for your attention.