
Pattern Matching in Encrypted Stream
from Inner Product Encryption

Elie Bouscatié(1,2) Guilhem Castagnos(1) Olivier Sanders(2)

(1) Université de Bordeaux
(2) Orange Labs

PKC 2023, May 09, 2023

End-to-End Encryption

More and more encrypted data

� about 90% of Internet traffic worldwide is encrypted

� increased use of encrypted messaging services (WhatsApp,...)
PKC – p 2

End-to-End Encryption

Standard encryption protocols designed to prevent any processing

� arbitration between privacy and functionalities

PKC – p 2

End-to-End Encryption

Current solutions imply decryption by a gateway

� the gateway can access all data exchanged through the channel

� what is the point of end-to-end encryption?
PKC – p 2

Pattern Matching

� Many applications perform pattern matching

− Intrusion Detection System (IDS)

− Content filtering

− Searches on genomic data

− ...

� Example of Snort rules:

− alert tcp (msg:”MALWARE-BACKDOOR - Dagger 1.4.0”;
content:”2| 00 00 00 06 00 00 00 | Drives | 24 00 |”,depth 16;)

− alert tcp (msg:”MALWARE-BACKDOOR QAZ Worm Client Login
access”; content:”qazwsx.hsq”;)

PKC – p 3

Searchable Encryption

� SE is an encryption scheme with additional features:

− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can test whether C = Encrypt(W)

SE does not address our problem

� We need:
− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can check whether W is contained in the
stream encrypted in C

PKC – p 4

Searchable Encryption

� SE is an encryption scheme with additional features:

− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can test whether C = Encrypt(W)

SE does not address our problem

� We need:
− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can check whether W is contained in the
stream encrypted in C

PKC – p 4

Searchable Encryption

� SE is an encryption scheme with additional features:

− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can test whether C = Encrypt(W)

SE does not address our problem

� We need:
− given sk one can derive a trapdoor tdw on a pattern W

− given tdw , the gateway can check whether W is contained in the
stream encrypted in C

PKC – p 4

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

...

$

EK

C0

� Each Ci can be tested using tdW

� The process must be repeated for each possible length of keywords

PKC – p 5

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

...

$

EK

C0 C1

� Each Ci can be tested using tdW

� The process must be repeated for each possible length of keywords

PKC – p 5

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

...

$

EK

C0 C1 C2

� Each Ci can be tested using tdW

� The process must be repeated for each possible length of keywords

PKC – p 5

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

...

$

EK

C0 C1 C2 C3

� Each Ci can be tested using tdW

� The process must be repeated for each possible length of keywords

PKC – p 5

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

...

$

EK

C0 C1 C2 C3 C4

� Each Ci can be tested using tdW

� The process must be repeated for each possible length of keywords

PKC – p 5

Dealing with Data Streams
SE-based solutions follow the sliding window method:

h o s t i l e patterns

host

hostile

host tile

$

EK

C0 C1 C2 C3 C4

� Each Ci can be tested using tdW

� Splitting keywords harms privacy

PKC – p 5

Hidden Vector Encryption

� n-HVE enables to encrypt vectors x = (x1, . . . , xn) ∈ Σn

� Secret keys are associated with vectors k = (k1, . . . , kn) where

− ki ∈ Σ

− or ki = ∗ (wildcard)

� Given skk and an encryption of x, Test returns

- 1 if ∀i ∈ [1, n] ki = ∗ or ki = xi

- 0 otherwise

� No leakage beyond the output of Test(skk, x)

PKC – p 6

Dealing with Data Streams

plaintext $ h o s t i l e
khost,0 h o s t ∗ ∗ ∗ ∗
khost,1 ∗ h o s t ∗ ∗ ∗
khost,2 ∗ ∗ h o s t ∗ ∗
khost,3 ∗ ∗ ∗ h o s t ∗
khost,4 ∗ ∗ ∗ ∗ h o s t

pattern: host

� Wildcards enable to deal with offsets

� Secret keys must be issued for each possible offset

⇒ n keys per pattern for n bytes stream

PKC – p 7

SEPM
� Searchable Encryption supporting Pattern Matching (SEPM) is
essentially a HVE with key size independent of n

� State-of-the-Art:

DFOS18 1: First construction, O(n) public key, proof in the GGM

BCC20 2: public key size independent of n, proof in the GGM

BCS21 3: improved performance, selective security under static assumption

Ad-hoc constructions, no adaptive security under standard assumptions

1Desmoulins et al. Pattern Matching on Encrypted Streams. Asiacrypt 2018.
2Bkakria et al. Privacy-Preserving Pattern Matching on Encrypted Data. Asiacrypt 2020.
3Bouscatié et al. Public Key Encryption with Flexible Pattern Matching. Asiacrypt 2021.

PKC – p 8

Our Contribution

PKC – p 9

Our Goal
We want to identify/improve relations between primitives

SEPM HVE IPE

Very few constructions Few constructions

Many constructions

?

� No known relation between SEPM and HVE

� Generic transformation (KSW4) from IPE to HVE with two-fold
ciphertext increase

4Katz et al. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner
Products. Journal of Cryptology 2013.

PKC – p 10

Our Goal
We want to identify/improve relations between primitives

SEPM HVE IPE

Very few constructions Few constructions

Many constructions

KSW?

� No known relation between SEPM and HVE

� Generic transformation (KSW4) from IPE to HVE with two-fold
ciphertext increase

4Katz et al. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner
Products. Journal of Cryptology 2013.

PKC – p 10

First Step: HVE→ SEPM

[BCC20] introduced the fragmentation approach:

� streams are split into overlapping fragments

� d is a bound on the largest searchable pattern

x =

x1︷ ︸︸ ︷
x1, . . . , xd , ︸ ︷︷ ︸

x2

xd+1, . . . , x2d ,

x3︷ ︸︸ ︷
x2d+1, . . . , x3d , ︸ ︷︷ ︸

x4

x3d+1, . . . , x4d , x4d+1, . . . , x5d , . . .

Fragmentation is much more powerful than initially thought

PKC – p 11

First Step: HVE→ SEPM
We use fragmentation to circumvent HVE limitations for streams

� streams are split into overlapping fragments

� d is a bound on the largest searchable pattern

x =

x1︷ ︸︸ ︷
x1, . . . , xd , ︸ ︷︷ ︸

x2

xd+1, . . . , x2d ,

x3︷ ︸︸ ︷
x2d+1, . . . , x3d , ︸ ︷︷ ︸

x4

x3d+1, . . . , x4d , x4d+1, . . . , x5d , . . .

� Use 2d-HVE to encrypt each fragment

� Use wildcards to deal with pattern offsets within a fragment

O(d) key size (independent of n)

� Run HVE.Test in each relevant fragment

PKC – p 12

Second Step: IPE→ HVE (KSW)

KSW proposed a generic conversion 2n-IPE − > n-HVE

x’=(x1 · r1 , . . . , xn · rn , −r1 , . . . , −rn)

k’=(1 , . . . , 1 , k1 , . . . , kn)

� HVE.Encrypt(x1, . . . , xn): r
$← Zp and C ← IPE.Encrypt(x’)

PKC – p 13

Second Step: IPE→ HVE (KSW)

KSW proposed a generic conversion 2n-IPE − > n-HVE

x’=(x1 · r1 , . . . , xn · rn , −r1 , . . . , −rn)
k’=(1 , . . . , 1 , k1 , . . . , kn)

� HVE.Keygen(k1, . . . , kn): skk ← IPE.Keygen(k’)

PKC – p 13

Second Step: IPE→ HVE (KSW)
KSW proposed a generic conversion 2n-IPE − > n-HVE

x’=(x1 · r1 , . . . , xn · rn , −r1 , . . . , −rn)
k’=(1 , . . . , 1 , k1 , . . . , kn)

� HVE.Test(C , skk):return 1 iff < x’, k’ >= 0 using IPE.Eval(C , skk)

Correctness:

� (x1, . . . , xn) = (k1, . . . , kn)⇒< x’, k’ >= 0

� < x’, k’ >= 0⇒ (x1, . . . , xn) = (k1, . . . , kn) with overwhelming
probability...

PKC – p 13

Second Step: IPE→ HVE (KSW)
KSW proposed a generic conversion 2n-IPE − > n-HVE

x’=(x1 · r1 , . . . , xn · rn , −r1 , . . . , −rn)
k’=(1 , . . . , 1 , k1 , . . . , kn)

� HVE.Test(C , skk):return 1 iff < x’, k’ >= 0 using IPE.Eval(C , skk)

Correctness:

� (x1, . . . , xn) = (k1, . . . , kn)⇒< x’, k’ >= 0

� < x’, k’ >= 0⇒ (x1, . . . , xn) = (k1, . . . , kn) with overwhelming
probability...

for honest key queries!

PKC – p 13

Second Step: IPE→ HVE (KSW)
KSW proposed a generic conversion 2n-IPE − > n-HVE

x’=(x1 · r1 , . . . , xn · rn , −r1 , . . . , −rn)
k’=(1 , . . . , 1 , k1 , . . . , kn)

� HVE.Test(C , skk):return 1 iff < x’, k’ >= 0 using IPE.Eval(C , skk)

Security:

� no formal security proof in KSW

� malicious queries create discrepancy between IPE/HVE experiments:

− Given the challenge IPE.Encrypt(x’), A chooses k’ such that
< x’, k’ >= 0 but (x1, . . . , xn)̸=(k1, . . . , kn)

− Valid query for the HVE experiment but not for the IPE one

� We show how to circumvent this issue in our paper

PKC – p 13

Second Step: IPE→ HVE (Ours)
We introduce a generic conversion (n + 1)-IPE − > n-HVE

x’=(x1 , . . . , xn , -1)
k’=(r1 , . . . , rn , < k, r >)

� two-fold improvement compared to KSW

� (x1, . . . , xn) = (k1, . . . , kn)⇒< x’, k’ >= 0

� < x’, k’ >= 0⇒ (x1, . . . , xn) = (k1, . . . , kn) with overwhelming
probability... still for honest key queries!

Security

� Selective security holds without additional assumptions

� Adaptive security needs an additional assumption

PKC – p 14

Second Step: IPE→ HVE (Ours)
We introduce a generic conversion (n + 1)-IPE − > n-HVE

x’=(x1 , . . . , xn , -1)
k’=(r1 , . . . , rn , < k, r >)

� two-fold improvement compared to KSW

� (x1, . . . , xn) = (k1, . . . , kn)⇒< x’, k’ >= 0

� < x’, k’ >= 0⇒ (x1, . . . , xn) = (k1, . . . , kn) with overwhelming
probability... still for honest key queries!

Security

� Selective security holds without additional assumptions

� Adaptive security needs an additional assumption

PKC – p 14

Second Step: IPE→ HVE (Ours)
Adaptive security experiment

CIPE CHVE AHVE

ki←−−−−−
k’i = (r1, . . . , rn, < k, r >)
←−−−−−−−−−−−−−−− r

$← Zp

skk’i−−−−−−−−−−−−−−−→
skk’i−−−−−→

{x′b = (xb,−1)}b∈{0,1}←−−−−−−−−−−−−−−−
{xb}b∈{0,1}←−−−−− (Challenge phase)

Example of malicious selection of x0 and x1

� ∀i , b, ki ̸= xb (valid HVE queries)

� ∃i∗, b∗ :< k′i∗, xb∗ >= 0 and < k′i∗ , x1−b∗ > ̸= 0 (invalid IPE queries)

PKC – p 15

Second Step: IPE→ HVE (Ours)
Adaptive security experiment

CIPE CHVE AHVE

ki←−−−−−
k’i = (r1, . . . , rn, < k, r >)
←−−−−−−−−−−−−−−− r

$← Zp

skk’i−−−−−−−−−−−−−−−→
skk’i−−−−−→

{x′b = (xb,−1)}b∈{0,1}←−−−−−−−−−−−−−−−
{xb}b∈{0,1}←−−−−− (Challenge phase)

Example of malicious selection of x0 and x1

� ∀i , b, ki ̸= xb (valid HVE queries)

� ∃i∗, b∗ :< k′i∗, xb∗ >= 0 and < k′i∗ , x1−b∗ > ̸= 0 (invalid IPE queries)

PKC – p 15

Second Step: IPE→ HVE (Ours)
Adaptive security experiment

CIPE CHVE AHVE

ki←−−−−−
k’i = (r1, . . . , rn, < k, r >)
←−−−−−−−−−−−−−−− r

$← Zp

skk’i−−−−−−−−−−−−−−−→
skk’i−−−−−→

{x′b = (xb,−1)}b∈{0,1}←−−−−−−−−−−−−−−−
{xb}b∈{0,1}←−−−−−

(Challenge phase)

Example of malicious selection of x0 and x1

� ∀i , b, ki ̸= xb (valid HVE queries)

� ∃i∗, b∗ :< k′i∗, xb∗ >= 0 and < k′i∗ , x1−b∗ > ̸= 0 (invalid IPE queries)

PKC – p 15

Second Step: IPE→ HVE (Ours)

Main observations

� Knowledge of k′i enables to find such xb

⇒ skk′i must hide k′i

� Function-privacy strongly depends on the context (pattern entropy)

⇒ we want a property independent of the context

� A has some control over k′i as it selects ki

⇒ must be modelled by our property

PKC – p 16

Second Step: IPE→ HVE (Ours)
We introduce key privacy for IPE

CIPE A(pk)
ki←−−−−−−−−−−
skki−−−−−−−−−−→

(challenge) y
←−−−−−−−−−−

u
$← {v :< v, y >= 0} sku−−−−−−−−−−→

ki←−−−−−−−−−−
skki−−−−−−−−−−→

(output)z
←−−−−−−−−−−

A has some control on u through the choice of y

sufficient for our IPE→HVE transformation

PKC – p 17

Second Step: IPE→ HVE (Ours)
We introduce key privacy for IPE

CIPE A(pk)
ki←−−−−−−−−−−
skki−−−−−−−−−−→

(challenge) y
←−−−−−−−−−−

u
$← {v :< v, y >= 0} sku−−−−−−−−−−→

ki←−−−−−−−−−−
skki−−−−−−−−−−→

(output)z
←−−−−−−−−−−

A wins if:
� < u, z >= 0

� z /∈ Vect(y) (no trivial win)
PKC – p 17

Second Step: IPE→ HVE (Ours)

� We prove adaptive security of our conversion with key private IPE

� Key privacy can easily be assessed

− independent of the context

− achieved by KSW under Discrete Log assumption

− achieved by OT5 under Discrete Log assumption

− we provide examples of scheme that do not achieve it

⇒ some IPE schemes yield better HVE than others

5Okamoto et al. Adaptively attribute-hiding inner product encryption. Eurocrypt 2012.

PKC – p 18

Conclusion

� We show how to generically build SEPM from HVE

� We revisit relations between HVE and IPE

− We introduce a more efficient conversion IPE → HVE than KSW

− We prove selective security of our conversion without additional
condition

− We prove adaptive security assuming a mild condition we formalise

� Our work leads to many new SEPM constructions with new features

PKC – p 19

