Pattern Matching in Encrypted Stream
from Inner Product Encryption

1,2)

Elie Bouscatié! Guilhem Castagnos(*) Olivier Sanders(®)

(1) Université de Bordeaux
(2) Orange Labs

PKC 2023, May 09, 2023

End-to-End Encryption

More and more encrypted data
- about 90% of Internet traffic worldwide is encrypted

- increased use of encrypted messaging services (WhatsApp,...)
PKC-p 2

End-to-End Encryption

2 o

éu—|—u‘

Standard encryption protocols designed to prevent any processing

- arbitration between privacy and functionalities

PKC-p 2

End-to-End Encryption

s"%

Qu

uu

Current solutions imply decryption by a gateway
« the gateway can access all data exchanged through the channel

« what is the point of end-to-end encryption?
PKC-p 2

Pattern Matching

- Many applications perform pattern matching
— Intrusion Detection System (IDS)
- Content filtering

- Searches on genomic data

« Example of Snort rules:

- alert tep (msg:” MALWARE-BACKDOOR - Dagger_ 1.4.0";
content:" 2| 00 00 00 06 00 00 00 | Drives | 24 00 |",depth 16;)

- alert tep (msg:” MALWARE-BACKDOOR QAZ Worm Client Login
access”; content:” qazwsx.hsq”;)

PKC-p 3

Searchable Encryption

= SE is an encryption scheme with additional features:

- given sk one can derive a trapdoor td, on a pattern W

- given td,, the gateway can test whether C = Encrypt(W)

PKC-p 4

Searchable Encryption

= SE is an encryption scheme with additional features:

- given sk one can derive a trapdoor td, on a pattern W

- given td,, the gateway can test whether C = Encrypt(W)

SE does not address our problem

PKC-p 4

Searchable Encryption

= SE is an encryption scheme with additional features:

- given sk one can derive a trapdoor td, on a pattern W

- given td,, the gateway can test whether C = Encrypt(W)
SE does not address our problem

= We need:

— given sk one can derive a trapdoor td, on a pattern W

- given td,,, the gateway can check whether W is contained in the
stream encrypted in C

PKC-p 4

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o s t i | e patterns
host
Ex hostile
|
(o

« Each C; can be tested using tdy

= The process must be repeated for each possible length of keywords

PKC-p 5

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o s t i | e patterns
host
Ex hostile
!
G G

« Each C; can be tested using tdy

= The process must be repeated for each possible length of keywords

PKC-p 5

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o s t i | e patterns
|_‘T_, host
Ex hostile
|
G G G

« Each C; can be tested using tdy

= The process must be repeated for each possible length of keywords

PKC-p 5

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o S t i | S

L1

Ex

l

G G G G

« Each C; can be tested using tdy

patterns

host

hostile

= The process must be repeated for each possible length of keywords

PKC-p 5

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o S t i | e

Ll

Ex

l

G G G G G

« Each C; can be tested using tdy

patterns

host

hostile

= The process must be repeated for each possible length of keywords

PKC-p 5

Dealing with Data Streams

SE-based solutions follow the sliding window method:

$ h o s t i I e patterns
_L[host
hostile
Ex JN
! host tile

G G G G G

= Each C; can be tested using tdy

- Splitting keywords harms privacy

PKC-p 5

Hidden Vector Encryption

« n-HVE enables to encrypt vectors x = (xy,...,x,) € "
« Secret keys are associated with vectors k = (ki, ..., k,) where
- ki ex

- or ki = * (wildcard)

= Given skk and an encryption of x, Test returns

- 1IfVI€[1,n] k,':*Ol’k,':xi

- 0 otherwise

+ No leakage beyond the output of Test(skg, x)

PKC-p 6

Dealing with Data Streams

plaintext | $ h o s t i | e
Knost,0 h o s t *x x x %
Knost,1 x h o s t % x %
Knost,2 *x x h o s t x %
khost,3 * % x h o s t =
khost,4 * x x x h o s t

pattern: host

= Wildcards enable to deal with offsets

» Secret keys must be issued for each possible offset

= n keys per pattern for n bytes stream

PKC-p 7

SEPM

« Searchable Encryption supporting Pattern Matching (SEPM) is
essentially a HVE with key size independent of n

= State-of-the-Art:

DFOS18 *: First construction, O(n) public key, proof in the GGM
BCC20 2: public key size independent of n, proof in the GGM

BCS21 3: improved performance, selective security under static assumption

Ad-hoc constructions, no adaptive security under standard assumptions

IDesmoulins et al. Pattern Matching on Encrypted Streams. Asiacrypt 2018.
2Bkakria et al. Privacy-Preserving Pattern Matching on Encrypted Data. Asiacrypt 2020.
3Bouscatié et al. Public Key Encryption with Flexible Pattern Matching. Asiacrypt 2021.

PKC-p 8

Our Contribution

Our Goal

We want to identify/improve relations between primitives

Very few constructions .
y Few constructions

Many constructions

= No known relation between SEPM and HVE

PKC-p 10

Our Goal

We want to identify/improve relations between primitives

Very few constructions

Few constructions

Many constructions
» No known relation between SEPM and HVE

- Generic transformation (KSW*) from IPE to HVE with two-fold
ciphertext increase

4Katz et al. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner
Products. Journal of Cryptology 2013.
PKC-p 10

First Step: HVE — SEPM

[BCC20] introduced the fragmentation approach:

« streams are split into overlapping fragments

« d is a bound on the largest searchable pattern

X1 X3

X = X1y s Xds Xd4+1y -+ X2dy X2d 41y -+ X3dy X3d+1y -+ - Xads Xad+15 -+ -5 X5d,y - - -

X2 X4

Fragmentation is much more powerful than initially thought

PKC-p 11

First Step: HVE — SEPM

We use fragmentation to circumvent HVE limitations for streams

« streams are split into overlapping fragments

« d is a bound on the largest searchable pattern

X1 X3

X = X].;"-7Xd7XC/+17"'7X2C/7X2d+17-"7X3d7X3d+17‘"7X4d7X4d+17

ey Xy e -

X2 Xg4

« Use 2d-HVE to encrypt each fragment
« Use wildcards to deal with pattern offsets within a fragment
O(d) key size (independent of n)

« Run HVE.Test in each relevant fragment

PKC-p 12

Second Step: IPE — HVE (KSW)

KSW proposed a generic conversion 2n-IPE — > n-HVE

X=(x1-n . .. X th . =N, ., —In

« HVE.Encrypt(xy,...,Xn): r & Zp and C < IPE.Encrypt(x’)

PKC-p 13

Second Step: IPE — HVE (KSW)

KSW proposed a generic conversion 2n-IPE — > n-HVE

X=(x1-n . .. X' th . —H ., .., —I
kK=(1 . .., 1 k. e ke

« HVE Keygen(ki, ..., k,): sk + IPE.Keygen(k’)

PKC-p 13

Second Step: IPE — HVE (KSW)

KSW proposed a generic conversion 2n-IPE — > n-HVE

X=(xx-n , ... , Xolh , —N , ... , —Ip)

kK=(1 ., o1 ke ke)
« HVE.Test(C, skg):return 1 iff < x’,k’ >= 0 using IPE.Eval(C,sk)

Correctness:
s (X, xn) = (ki k) =< Xk >=0

« <xk'>=0= (x1,...,xn) = (ki, ..., ky) with overwhelming
probability...

PKC-p 13

Second Step: IPE — HVE (KSW)

KSW proposed a generic conversion 2n-IPE — > n-HVE

X=(xx-n , ... , Xoolh , —N , ... , —Ip)
k'=(1 L, 1 ke o ke)

« HVE.Test(C, skg):return 1 iff < x’,k’ >= 0 using IPE.Eval(C,sk)

Correctness:

. (Xl,...,X,,):(kl,...,k,,):><x,,k’ >=0

<X k'>=0= (x1,...,%,) = (ku, ..., ky) with overwhelming
probability...

for honest key queries!

PKC-p 13

Second Step: IPE — HVE (KSW)

KSW proposed a generic conversion 2n-IPE — > n-HVE

X=(xx-n , ... , Xolh , —N , ... , —Ip)

k'=(1 L, 1 ke oo ke)

« HVE.Test(C,skg):return 1 iff < x’,k’ >= 0 using IPE.Eval(C,sk)
Security:

= no formal security proof in KSW

- malicious queries create discrepancy between IPE/HVE experiments:

- Given the challenge IPE.Encrypt(x’), A chooses k’ such that
<x', k' >=0 but (x1,...,xn)#(ki, ..., kn)

- Valid query for the HVE experiment but not for the IPE one

= We show how to circumvent this issue in our paper

PKC-p 13

Second Step: IPE — HVE (Ours)

We introduce a generic conversion (n + 1)-IPE — > n-HVE

X=(x1 ..., Xn -1)
k=(n , ... , rmn , <kr>)

= two-fold improvement compared to KSW
o (X1, Xn) = (Kiy oo ky) =< XK >=0

<X, k'>=0= (x1,..., %) = (ki, ..., ky) with overwhelming
probability... still for honest key queries!

PKC-p 14

Second Step: IPE — HVE (Ours)

We introduce a generic conversion (n + 1)-IPE — > n-HVE

X=(x1 ..., Xn -1)
k=(n , ... , rmn , <kr>)

= two-fold improvement compared to KSW
o (X1, Xn) = (Kiy oo ky) =< XK >=0

<X, k'>=0= (x1,..., %) = (ki, ..., ky) with overwhelming
probability... still for honest key queries!

Security
= Selective security holds without additional assumptions

« Adaptive security needs an additional assumption

PKC-p 14

Second Step: IPE — HVE (Ours)

Adaptive security experiment

CIPE CHVE -AHVE
ki
<7
k'i=(rn,...,rm< k’r>)r<in
Skk'i Skk’;

PKC-p 15

Second Step: IPE — HVE (Ours)

Adaptive security experiment

Cipe Chve Anve
LT
Ki=(r,....rm<kr>
i = (n i r>) r Lp
Skk'[Skk’;
x. = (x ’_1 X
{x}, = (X6, =1) }befo,1} {ml} (Challenge phase)

PKC-p 15

Second Step: IPE — HVE (Ours)

Adaptive security experiment

CIPE CHVE -AHVE
k;
kKi=(n,....,m<kr>
= mskr>) sy
Skk'[Skk’;
{x} = (xb, 1) }beqo,1} {Xb}beqo,1}
(_

Example of malicious selection of xg and x;
« Vi, b,k; # xp (valid HVE queries)
« 3, b i< Ky, Xpe >= 0 and < K}.,x1_p > 0 (invalid IPE queries)

PKC-p 15

Second Step: IPE — HVE (Ours)

Main observations

« Knowledge of k! enables to find such x,

= sk must hide k;

« Function-privacy strongly depends on the context (pattern entropy)

= we want a property independent of the context

= A has some control over kf as it selects k;

= must be modelled by our property

PKC-p 16

Second Step: IPE — HVE (Ours)

We introduce key privacy for IPE

Cipe A(pk)

k;
%

Skk,.
%
(challenge) y
<7

u<i{v:<v,y>:0} L

A has some control on u through the choice of y

sufficient for our IPE—HVE transformation

PKC-p 17

P

Second Step: IPE — HVE (Ours)

We introduce key privacy for IPE

Cipe

A(pk)
k;
%
Skk,.
%

u<i{v:<v,y>:0}

(challenge) y
<7

A wins if:
s <u,z>=0

o R ¢ Vect(y) (no trivial win)

Second Step: IPE — HVE (Ours)

= We prove adaptive security of our conversion with key private IPE

= Key privacy can easily be assessed
- independent of the context
- achieved by KSW under Discrete Log assumption
~ achieved by OT® under Discrete Log assumption

- we provide examples of scheme that do not achieve it

= some IPE schemes yield better HVE than others

50Okamoto et al. Adaptively attribute-hiding inner product encryption. Eurocrypt 2012.

PKC-p 18

Conclusion

« We show how to generically build SEPM from HVE

« We revisit relations between HVE and IPE

- We introduce a more efficient conversion IPE — HVE than KSW

- We prove selective security of our conversion without additional
condition

- We prove adaptive security assuming a mild condition we formalise

= Our work leads to many new SEPM constructions with new features

PKC-p 19

