Pseudorandom Correlation Functions from Variable-Density LPN, Revisited

Geoffroy Couteau ${ }^{1}$
Clément Ducros ${ }^{2}$
${ }^{1}$ CNRS, IRIF, Université de Paris
${ }^{2}$ Université de Paris, IRIF, INRIA
May 10, 2023

A new primitive $\left[\mathrm{BCG}^{+} 20\right]^{1}$

Pseudo-Random
 Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \rightarrow B$ is a WPRF when the two distributions
$\mathcal{D}=\{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}^{\prime}=\{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable.
i.e. the adversary can asks for random samples $(x, f(x))$ but can't evaluate the function on chosen inputs.

[^0]A new primitive $\left[\mathrm{BCG}^{+} 20\right]^{1}$

Pseudo-Random Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \rightarrow B$ is a WPRF when the two distributions
$\mathcal{D}=\{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}^{\prime}=\{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable.
i.e. the adversary can asks for random samples $(x, f(x))$ but can't evaluate the function on chosen inputs.

[^1]A new primitive $\left[\mathrm{BCG}^{+} 20\right]^{1}$

Pseudo-Random Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \rightarrow B$ is a WPRF when the two distributions
$\mathcal{D}=\{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}^{\prime}=\{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable.
i.e. the adversary can asks for random samples $(x, f(x))$ but can't evaluate the function on chosen inputs.

[^2]
Outline

A new WPRF

A framework of attacks

Our contribution

1-A new WPRF

About Pseudo-Random Generators

How to construct PRG?

Learning Parity with Noise

Syndrome Decoding Assumption

- Let H be a random matrix, e a random noise vector of small Hamming Weight. Then $H \cdot e^{\top}$ is indistinguishable from a random vector.
- What about more structured H ?

Using this idea for WPRF

Using this idea for WPRF

Using this idea for WPRF

Same idea! Use LPN!

Each row can be seen as an input. The adversary knows H, and the result of $H \cdot e^{\top}$. Number N of samples $\rightarrow N$ rows in H. N should be exponentially big.

Two problems

Variable Density Learning Parity with Noise $\left[\mathrm{BCG}^{+} 20\right]$

Solution: Exponentially decreasing density

Variable Density Learning Parity with Noise $\left[\mathrm{BCG}^{+} 20\right]$

Solution: Exponentially decreasing density

The noise follows the same shape as one row of H .

2- A framework of attacks

Linear attacks paradigm $\left[\mathrm{BCG}^{+} 20\right]$

Bias of a distribution

Given a distribution \mathcal{D} over \mathbb{F}_{2}^{n}, a vector $v \in \mathbb{F}_{2}^{n}$:

$$
\operatorname{bias}_{v}(\mathcal{D})=\left|\frac{1}{2}-\underset{\substack{\operatorname{Pr} \\ u \leftarrow \mathcal{D}}}{\operatorname{Pr}}\left[v^{\top} \cdot u=1\right]\right|
$$

The bias of \mathcal{D}, denoted $\operatorname{bias}(\mathcal{D})$, is the maximum bias of \mathcal{D} with respect to any nonzero vector v.

- Send H to the adversary
- The adversary returns a test vector v computed from H with unbounded time.
- Is $v^{\top} \cdot u=v^{\top} \cdot H \cdot e$ biased?

Linear attacks paradigm $\left[\mathrm{BCG}^{+} 20\right]$

Bias of a distribution

Given a distribution \mathcal{D} over \mathbb{F}_{2}^{n}, a vector $v \in \mathbb{F}_{2}^{n}$:

$$
\operatorname{bias}_{v}(\mathcal{D})=\left|\frac{1}{2}-\underset{\substack{\operatorname{Pr} \\ u \leftarrow \mathcal{D}}}{\operatorname{Pr}}\left[v^{\top} \cdot u=1\right]\right|
$$

The bias of \mathcal{D}, denoted $\operatorname{bias}(\mathcal{D})$, is the maximum bias of \mathcal{D} with respect to any nonzero vector v.

- Send H to the adversary
- The adversary returns a test vector v computed from H with unbounded time.
- Is $v^{\top} \cdot u=v^{\top} \cdot H \cdot e$ biased?

Resistance against linear attacks

Resistance against linear attacks
We obtain the resistance against linear attacks when

$$
\underset{x^{1}, \cdots, x^{N(\lambda)} \stackrel{S}{\leftarrow} \mathbb{F}_{2}^{n(\lambda)}}{\operatorname{Pr}}[\operatorname{bias}(\mathcal{D}(x)>\epsilon(\lambda)]<\delta(\lambda)
$$

where ϵ and δ are small depending on the security parameter λ.

Attacks	Linear?
Gaussian elimination	$\mathbf{~}$
Statistical decoding	
Information set decoding	
BKW	$\mathbf{~}$
Algebraic attack	$\mathbf{\aleph}$
Statistical Query Algorithm	\mathbb{Z}

Analysis of security

- Evaluation of the bias of $H \cdot e$

Analysis of security

- The block H_{i} protects against vectors attacks v of Hamming Weight $l \in\left[2^{i-1}, 2^{i}\right]$

Analysis of security

- The block H_{i} protects against vectors attacks v of Hamming Weight $l \in\left[2^{i-1}, 2^{i}\right]$

Analysis of security

- The block H_{i} protects against vectors attacks v of Hamming Weight $l \in\left[2^{i-1}, 2^{i}\right]$

- We focus on the random value $Z_{k}=\left|2^{i-1}-R_{k}\right|$, e.g. the distance to the mean.

3 - Our contribution

Our contribution

- $\left[\mathrm{BCG}^{+} 20\right]$ proved VDLPN secure against linear attacks. Their construction was not intended to be efficient.

Our contribution

- $\left[\mathrm{BCG}^{+} 20\right]$ proved VDLPN secure against linear attacks. Their construction was not intended to be efficient.

Our contribution is divided in two parts:

- We provide a variant of VDLPN, with a new proof that offers results getting close to efficient.
- We found an error in the proof of security of $\left[\mathrm{BCG}^{+} 20\right]$ and fixed it.

First axis, a better analysis

Bias for each sub-matrix :

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i, k}\right)=\frac{Z_{k}}{2^{i}}
$$

First axis, a better analysis

Bias for each sub-matrix :

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i, k}\right)=\frac{Z_{k}}{2^{i}} .
$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i}\right) \leq \frac{1}{2} \cdot \prod_{k=1}^{w} \frac{Z_{k}}{2^{i-1}}
$$

First axis, a better analysis

Bias for each sub-matrix :

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i, k}\right)=\frac{Z_{k}}{2^{i}} .
$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i}\right) \leq \frac{1}{2} \cdot \prod_{k=1}^{w} \frac{Z_{k}}{2^{i-1}}
$$

$\operatorname{Pr}\left[\operatorname{bias}_{\mathbf{v}}\left(O^{i}\right)>B\right]$

First axis, a better analysis

Bias for each sub-matrix :

$$
\operatorname{bias}_{\mathbf{v}}\left(O^{i, k}\right)=\frac{Z_{k}}{2^{i}} .
$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$
\begin{aligned}
& \operatorname{bias}_{\mathbf{v}}\left(O^{i}\right) \leq \frac{1}{2} \cdot \prod_{k=1}^{w} \frac{Z_{k}}{2^{i-1}} . \\
& \operatorname{Pr}\left[\operatorname{bias}_{\mathbf{v}}\left(O^{i}\right)>B\right]=\operatorname{Pr}\left[\prod_{k=1}^{w} Z_{k}>2^{(i-1) w} \times(2 B)\right] \leq \operatorname{Pr}\left[\sum_{k=1}^{w} Z_{k}>w \cdot 2^{(i-1)} \cdot c\right]
\end{aligned}
$$

The previous proof taked into accounts only the top countributors.
Our key idea : transform the product of Z_{k} into a sum ; that we can afterwards bound with known concentration bounds.

Firt axis, a better analysis

The expression we obtain is of the shape

$$
\operatorname{Pr}\left[\operatorname{bias}_{\mathbf{v}}\left(O^{i}\right) \geq c^{w}\right] \leq \exp \left(-\frac{w}{a}\right)
$$

a is reduced by 3 order of magnitude.

Second axis: a slightly different assumption

Loose bounds for small matrices.

Second axis: a slightly different assumption

Loose bounds for small matrices.

- The matrix R is random, and offer protection against all the attack vectors of Hamming Weight $l<2^{i^{*}-1}$.
- We set the size of R according to our security parameter.

Third Axis: a simulation analysis

Natural question during the proof : estimate β such that $\mathbb{E}\left[Z_{k}\right]<\beta \cdot 2^{i}$.

- Loose upper bound on β
- Better estimation of β estimated via computer simulation. Security parameter divided by 4.

Results

- Our variant has bias at most 2^{-80} with probability at least $1-2^{-80}$; with $w=380$ and maximum number of samples $N=2^{30}$.
- Similar security parameters were proved in $\left[\mathrm{BCG}^{+} 20\right]$ but for $w \geq 10^{6}$.

Results

- Our variant has bias at most 2^{-80} with probability at least $1-2^{-80}$; with $w=380$ and maximum number of samples $N=2^{30}$.
- Similar security parameters were proved in [$\left.\mathrm{BCG}^{+} 20\right]$ but for $w \geq 10^{6}$. Impact on the PCF construction scheme :

Variant	Seed size	PCF evaluations per second
This work	2.94 MB	500
Aggressive variant	0.35 MB	3890

Table: PCF seed size and speed using a 3.8 GHz processor, on single core, estimation.

Results

- Our variant has bias at most 2^{-80} with probability at least $1-2^{-80}$; with $w=380$ and maximum number of samples $N=2^{30}$.
- Similar security parameters were proved in [$\left.\mathrm{BCG}^{+} 20\right]$ but for $w \geq 10^{6}$. Impact on the PCF construction scheme :

Variant	Seed size	PCF evaluations per second
This work	2.94 MB	500
Aggressive variant	0.35 MB	3890

Table: PCF seed size and speed using a 3.8 GHz processor, on single core, estimation.

Thank you for your attention!

[^0]: ${ }^{1}$ Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.
 In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

[^1]: ${ }^{1}$ Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.
 In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

[^2]: ${ }^{1}$ Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.
 In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

