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A new primitive [BCG+20] 1

Weak Pseudo-Random Function (WPRF)

A function f,A → B is a WPRF when
the two distributions
D = {f(x), x $← A} and D′ = {y $← B}
are indistinguishable.
i.e. the adversary can asks for random
samples (x, f(x)) but can’t evaluate the
function on chosen inputs.
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1 - A new WPRF



About Pseudo-Random Generators

Pseudo Random Generators ?

How to construct PRG?



Learning Parity with Noise

Syndrome Decoding Assumption

• Let H be a random matrix, e a random noise vector of small Hamming
Weight. Then H · e⊤ is indistinguishable from a random vector.

• What about more structured H?



Using this idea for WPRF

Same idea! Use LPN!

fk(x) =

View of =

Each row can be seen as an input. The adversary knows H, and the result of H · e⊤.
Number N of samples → N rows in H. N should be exponentially big.
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Two problems



Variable Density Learning Parity with Noise [BCG+20]
Solution : Exponentially decreasing density

The noise follows the same shape as one row of H.
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2 - A framework of attacks



Linear attacks paradigm [BCG+20]

Bias of a distribution

Given a distribution D over Fn
2 , a

vector v ∈ Fn
2 :

biasv(D) =

∣∣∣∣∣12 − Pr
u

$←D
[v⊤ · u = 1]

∣∣∣∣∣
The bias of D, denoted bias(D), is
the maximum bias of D with respect
to any nonzero vector v.

• Send H to the adversary

• The adversary returns a test vector v
computed from H with unbounded
time.

• Is v⊤ · u = v⊤ ·H · e biased ?
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Resistance against linear attacks

Resistance against linear attacks

We obtain the resistance against linear at-
tacks when

Pr
x1,··· ,xN(λ) $←Fn(λ)

2

[bias(D(x) > ϵ(λ)] < δ(λ)

where ϵ and δ are small depending on the
security parameter λ.

Attacks Linear?

Gaussian elimination

Statistical decoding

Information set decoding

BKW

Algebraic attack

Statistical Query Algorithm



Analysis of security

• Evaluation of the bias of H · e

• The block Hi protects against
vectors attacks v of Hamming
Weight l ∈ [2i−1, 2i]

Vector of HW Rk

• We focus on the random
value Zk = |2i−1 −Rk|, e.g.
the distance to the mean.
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3 - Our contribution



Our contribution

• [BCG+20] proved VDLPN secure against linear attacks. Their construction was
not intended to be efficient.

Our contribution is divided in two parts:

• We provide a variant of VDLPN, with a new proof that offers results getting close
to efficient.

• We found an error in the proof of security of [BCG+20] and fixed it.
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First axis, a better analysis

Bias for each sub-matrix :

biasv(O
i,k) =

Zk

2i
.

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

biasv(O
i) ≤ 1

2
·

w∏
k=1

Zk

2i−1
.

Pr[biasv(O
i) > B]= Pr

[
w∏

k=1

Zk > 2(i−1)w × (2B)

]
≤ Pr

[
w∑

k=1

Zk > w · 2(i−1) · c

]
The previous proof taked into accounts only the top countributors.
Our key idea : transform the product of Zk into a sum ; that we can afterwards bound
with known concentration bounds.
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Firt axis, a better analysis

The expression we obtain is of the shape

Pr

[
biasv(O

i) ≥ cw
]
≤ exp(−w

a
)

a is reduced by 3 order of magnitude.



Second axis: a slightly different assumption

Loose bounds for small matrices.

• The matrix R is random, and offer protection against all the attack vectors of
Hamming Weight l < 2i

∗−1.

• We set the size of R according to our security parameter.
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Third Axis : a simulation analysis

Natural question during the proof : estimate β such that E[Zk] < β · 2i.
• Loose upper bound on β

• Better estimation of β estimated via computer simulation. Security parameter
divided by 4.



Results

• Our variant has bias at most 2−80 with probability at least 1− 2−80 ; with
w = 380 and maximum number of samples N = 230.

• Similar security parameters were proved in [BCG+20] but for w ≥ 106.

Impact on the PCF construction scheme :

Variant Seed size PCF evaluations per second

This work 2.94MB 500

Aggressive variant 0.35MB 3890

Table: PCF seed size and speed using a 3.8GHz processor, on single core, estimation.

Thank you for your attention !
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