Pseudorandom Correlation Functions from Variable-Density LPN, Revisited

Geoffroy Couteau¹

Clément Ducros²

¹CNRS, IRIF, Université de Paris

²Université de Paris, IRIF, INRIA

May 10, 2023

A new primitive [BCG⁺20]¹

Pseudo-Random Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \to B$ is a WPRF when the two distributions $\mathcal{D} = \{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}' = \{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable. i.e. the adversary can asks for random samples (x, f(x)) but can't evaluate the function on chosen inputs.

¹Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.

In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

A new primitive [BCG⁺20]¹

Pseudo-Random Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \to B$ is a WPRF when the two distributions $\mathcal{D} = \{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}' = \{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable. i.e. the adversary can asks for random samples (x, f(x)) but can't evaluate the function on chosen inputs.

In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

¹Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.

A new primitive [BCG⁺20]¹

Pseudo-Random Correlation Function

Weak Pseudo-Random Function (WPRF)

A function $f, A \to B$ is a WPRF when the two distributions $\mathcal{D} = \{f(x), x \stackrel{\$}{\leftarrow} A\}$ and $\mathcal{D}' = \{y \stackrel{\$}{\leftarrow} B\}$ are indistinguishable. i.e. the adversary can asks for random samples (x, f(x)) but can't evaluate the function on chosen inputs.

In 61st FOCS, pages 1069-1080. IEEE Computer Society Press, November 2020

¹Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseudorandom functions from variable-density LPN.

A new WPRF

A framework of attacks

Our contribution

1 - A new WPRF

About Pseudo-Random Generators

Learning Parity with Noise

Syndrome Decoding Assumption

- Let H be a random matrix, e a random noise vector of small Hamming Weight. Then $H \cdot e^{\top}$ is indistinguishable from a random vector.
- What about more structured *H*?

```
Using this idea for \mathsf{WPRF}
```


Using this idea for WPRF

Each row can be seen as an input. The adversary knows H, and the result of $H \cdot e^{\top}$. Number N of samples $\rightarrow N$ rows in H. N should be exponentially big.

Two problems

Variable Density Learning Parity with Noise [BCG⁺20]

Solution : Exponentially decreasing density

Variable Density Learning Parity with Noise [BCG⁺20]

Solution : Exponentially decreasing density

The noise follows the same shape as one row of H.

2 - A framework of attacks

Linear attacks paradigm [BCG⁺20]

Bias of a distribution

Given a distribution $\mathcal D$ over $\mathbb F_2^n$, a vector $v\in\mathbb F_2^n$:

$$\mathsf{bias}_{v}(\mathcal{D}) = \left| \frac{1}{2} - \Pr_{\substack{u \stackrel{\$}{\leftarrow} \mathcal{D}}} [v^{\top} \cdot u = 1] \right|$$

The bias of \mathcal{D} , denoted bias(\mathcal{D}), is the maximum bias of \mathcal{D} with respect to any nonzero vector v.

- Send *H* to the adversary
- The adversary returns a **test vector** v computed from H with unbounded time.

• Is
$$v^\top \cdot u = v^\top \cdot H \cdot e$$
 biased ?

Linear attacks paradigm [BCG⁺20]

Bias of a distribution

Given a distribution $\mathcal D$ over $\mathbb F_2^n$, a vector $v\in\mathbb F_2^n$:

$$\mathsf{bias}_v(\mathcal{D}) = \left| \frac{1}{2} - \Pr_{\substack{u \notin \mathcal{D} \\ \mathsf{w} \notin \mathcal{D}}} [v^\top \cdot u = 1] \right|$$

The bias of \mathcal{D} , denoted bias(\mathcal{D}), is the maximum bias of \mathcal{D} with respect to any nonzero vector v.

- Send *H* to the adversary
- The adversary returns a **test vector** v computed from H with unbounded time.

• Is
$$v^\top \cdot u = v^\top \cdot H \cdot e$$
 biased ?

Resistance against linear attacks

Resistance against linear attacks

We obtain the resistance against linear attacks when

 $\Pr_{x^1,\cdots,x^{N(\lambda)} \overset{\$}{\leftarrow} \mathbb{F}_2^{n(\lambda)}}[\mathsf{bias}(\mathcal{D}(x) > \epsilon(\lambda)] < \delta(\lambda)$

where ϵ and δ are small depending on the security parameter $\lambda.$

Attacks	Linear?
Gaussian elimination	\checkmark
Statistical decoding	\checkmark
Information set decoding	\checkmark
BKW	\checkmark
Algebraic attack	×
Statistical Query Algorithm	×

• Evaluation of the bias of $H \cdot e$

• The block H_i protects against vectors attacks v of Hamming Weight $l \in [2^{i-1}, 2^i]$

• The block H_i protects against vectors attacks v of Hamming Weight $l \in [2^{i-1}, 2^i]$

• The block H_i protects against vectors attacks v of Hamming Weight $l \in [2^{i-1}, 2^i]$

• We focus on the random value $Z_k = |2^{i-1} - R_k|$, e.g. the distance to the mean.

3 - Our contribution

Our contribution

• [BCG⁺20] proved VDLPN secure against linear attacks. Their construction was not intended to be efficient.

Our contribution

• [BCG⁺20] proved VDLPN secure against linear attacks. Their construction was not intended to be efficient.

Our contribution is divided in two parts:

- We provide a variant of VDLPN, with a new proof that offers results getting close to efficient.
- We found an error in the proof of security of [BCG⁺20] and fixed it.

Bias for each sub-matrix :

$$\mathsf{bias}_{\mathbf{v}}(O^{i,k}) = \frac{Z_k}{2^i}.$$

Bias for each sub-matrix :

$$\mathsf{bias}_{\mathbf{v}}(O^{i,k}) = \frac{Z_k}{2^i}.$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$\mathsf{bias}_{\mathbf{v}}(O^i) \leq rac{1}{2} \cdot \prod_{k=1}^w rac{Z_k}{2^{i-1}}.$$

Bias for each sub-matrix :

$$\mathsf{bias}_{\mathbf{v}}(O^{i,k}) = \frac{Z_k}{2^i}.$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$\mathsf{bias}_{\mathbf{v}}(O^i) \leq rac{1}{2} \cdot \prod_{k=1}^w rac{Z_k}{2^{i-1}}.$$

 $\Pr[\mathsf{bias}_{\mathbf{v}}(O^i) > B]$

 \mathbf{P}

Bias for each sub-matrix :

$$\mathsf{bias}_{\mathbf{v}}(O^{i,k}) = \frac{Z_k}{2^i}.$$

To obtain the bias of the entire bloc i, we use the Pilling-Up Lemma.

$$\begin{split} \mathsf{bias}_{\mathbf{v}}(O^i) &\leq \frac{1}{2} \cdot \prod_{k=1}^w \frac{Z_k}{2^{i-1}}.\\ \mathbf{r}[\mathsf{bias}_{\mathbf{v}}(O^i) > B] &= \Pr\left[\prod_{k=1}^w Z_k > 2^{(i-1)w} \times (2B)\right] \leq \Pr\left[\sum_{k=1}^w Z_k > w \cdot 2^{(i-1)} \cdot c\right] \end{split}$$

The previous proof taked into accounts only the top countributors. Our key idea : transform the product of Z_k into a sum ; that we can afterwards bound with known concentration bounds.

The expression we obtain is of the shape

$$\Pr\left[\mathsf{bias}_{\mathbf{v}}(O^i) \geq c^w\right] \leq \exp(-\frac{w}{a})$$

 \boldsymbol{a} is reduced by 3 order of magnitude.

Second axis: a slightly different assumption

Loose bounds for small matrices.

$$H = H_1 H_2 H_3 \cdots H_D$$

Second axis: a slightly different assumption

Loose bounds for small matrices.

$$H = R \qquad H_{i^*} \qquad \cdots \qquad H_D$$

- The matrix R is random, and offer protection against all the attack vectors of Hamming Weight $l<2^{i^{\ast}-1}.$
- We set the size of ${\cal R}$ according to our security parameter.

Natural question during the proof : estimate β such that $\mathbb{E}[Z_k] < \beta \cdot 2^i$.

- Loose upper bound on β
- Better estimation of β estimated via computer simulation. Security parameter divided by 4.

Results

- Our variant has bias at most 2^{-80} with probability at least $1 2^{-80}$; with w = 380 and maximum number of samples $N = 2^{30}$.
- Similar security parameters were proved in [BCG⁺20] but for $w \ge 10^6$.

Results

- Our variant has bias at most 2^{-80} with probability at least $1 2^{-80}$; with w = 380 and maximum number of samples $N = 2^{30}$.
- Similar security parameters were proved in [BCG⁺20] but for $w \ge 10^6$.

Impact on the PCF construction scheme :

Variant	Seed size	PCF evaluations per second
This work	2.94MB	500
Aggressive variant	0.35MB	3890

Table: PCF seed size and speed using a 3.8GHz processor, on single core, estimation.

Results

- Our variant has bias at most 2^{-80} with probability at least $1 2^{-80}$; with w = 380 and maximum number of samples $N = 2^{30}$.
- Similar security parameters were proved in [BCG⁺20] but for $w \ge 10^6$.

Impact on the PCF construction scheme :

Variant	Seed size	PCF evaluations per second
This work	2.94MB	500
Aggressive variant	0.35MB	3890

Table: PCF seed size and speed using a 3.8GHz processor, on single core, estimation.

Thank you for your attention !