

Almost Tightly-Secure Re-Randomizable and Replayable CCA-secure Public Key Encryption

Antonio Faonio, Dennis Hofheinz, **Luigi Russo**

Public Key Encryption

Standard Security Notion: chosen-ciphertext (IND-CCA)

Public Key Encryption

Standard Security Notion: chosen-ciphertext (IND-CCA)

Multi-user Multi-ciphertext CCA

Multi-user Multi-ciphertext CCA

Hybrid Argument allows to reduce multi to single!

Why is it not enough?

Hybrid Argument allows to reduce multi to single, but:

- Security Guarantees may degrade in scenario size
- Keylength recommendations may be influenced
- Scenario size may be **unpredictable/unknown** a priori

Tight Security

- Reduction loss is **independent** of number of ciphertexts and queries
- Keylength may be chosen regardless of the scenario size

Many schemes have been proved to have tight security [GHKW16], [GHK17], [HLLG19], [Hof17], ...

Re-Randomizable PKE

- Given a ciphertext C, it is possible to produce a fresh ciphertext C' such that Dec(sk, C) = Dec(sk, C')
- Rand(pk, C) \rightarrow C' is efficient and uses public information

ElGamal is a Re-Randomizable PKE

CCA + Re-randomizability?

CCA-security is impossible to achieve when the PKE scheme is Re-Randomizable...

CCA + Re-randomizability?

CCA-security is impossible to achieve when the PKE scheme is Re-Randomizable...

Replayable CCA Security

- sufficient to implement secure channels
- more efficient instantiations

Replayable CCA Security

Guarded Decryption Oracle

M = Dec(sk, C)

IF $M \in \{M_0, M_1\}$: RETURN "REPLAY"

RETURN M

RCCA + Re-randomizability

Rand RCCA Security

Rand-RCCA was introduced by [Gro04]

- Anonymous message transmissions [PR07]
- Mix-Nets [FFHR19], [PR17], [FR22]
- Controlled Functional Encryption [NAP+14]

Rand RCCA Security

Rand-RCCA was introduced by [Gro04]

- Anonymous message transmissions [PR07]
- Mix-Nets [FFHR19], [PR17], [FR22]
- Controlled Functional Encryption [NAP+14]

anonymous e-mail [Cha81], anonymous payments [JM99], electronic voting, ...

Rand RCCA Security

Multi-User Multi-Challenge Rand RCCA may be achieved through hybrid argument

But **security degrades** in settings where the **scenario size is unknown or arbitrarily large**

(anonymous e-mail, anonymous payments, e-voting, ...)

All the papers on Multi-Ciphertext Rand RCCA

14

Our work Multi-user Multi-ciphertext RCCA How to extend RCCA definition to this scenario **Tightly-secure Scheme(s)** Contributions 3 schemes under different assumptions and with different properties **Applications**

How to instantiate the first Tightly-secure MixNet ever

Rand RCCA Definition

Extending Rand RCCA to the multi-ciphertext setting is not trivial...

Naïve extensions of the guarded oracle are either **vulnerable** or **weak**

(A,B) → c₁

$\frac{\text{Guarded}}{\text{IF M} \in \{A,B\}: \text{REPLAY}}$

 $(A,B) \rightarrow c_1$ (C,D) → c_2

 $\frac{\text{Guarded}}{\text{IF M} \in \{A,B\}: \text{REPLAY}}$ $\text{IF M} \in \{C,D\}: \text{REPLAY}$

$$(A,B) \rightarrow c_1$$
$$(C,D) \rightarrow c_2$$
$$(E,A) \rightarrow c_3$$

Guarded

IF $M \in \{A,B\}$: REPLAY IF $M \in \{C,D\}$: REPLAY IF M = E: ???

Α

Ε

(A,B) → c₁ $(C,D) \rightarrow c_2$ (E,A) → c₂

GDec(c₃) allows to distinguish

Guarded

В

IF $M \in \{A,B\}$: REPLAY IF $M \in \{C,D\}$: REPLAY

С

D

IF M = E: REPLAY

Α

Ε

(A,B) → c₁ $(C,D) \rightarrow c_2$ $(E,A) \rightarrow c_3$

GDec(Rand(c₃)) to distinguish

Guarded

В

С

D

IF M \in {A,B}: REPLAY IF M \in {C,D}: REPLAY IF M \in {A,E}: REPLAY

 $(A,B) \rightarrow c_1$ (C,D) → c_2 (E,A) → c₂

<u>Guarded</u>

IF $M \in \{A, B, E\}$: REPLAY IF $M \in \{C, D\}$: REPLAY

Α

 $(A,B) \rightarrow c_1$ $(C,D) → c_2$ $(E,A) \rightarrow c_3$ (F,G) → c₄

Guarded

Β

С

D

F

IF $M \in \{A,B,E\}$: REPLAY IF $M \in \{C,D\}$: REPLAY IF $M \in \{F,G\}$: REPLAY G

Α

 $(A,B) \rightarrow c_1$ $(C,D) → c_2$ $(E,A) \rightarrow c_3$ (F,G) → c_₄

<u>Guarded</u>

Β

С

D

F

IF $M \in \{A,B,E\}$: REPLAY IF $M \in \{C,D\}$: REPLAY IF $M \in \{F,G\}$: REPLAY G

Α

$$(A,B) \rightarrow c_1$$
$$(C,D) \rightarrow c_2$$
$$(E,A) \rightarrow c_3$$
$$(F,G) \rightarrow c_4$$
$$(C,F) \rightarrow c_5$$

<u>Guarded</u>

В

IF $M \in \{A, B, E\}$: REPLAY IF $M \in \{C, D, F, G\}$: REPLAY

D

F

С

G

(IND-CCA) Reduction Goal

(IND-CCA) Reduction Goal

Goal: Replace challenge ciphertexts with encryption of **random msg**

(IND-CCA) Reduction Goal

Goal: Replace challenge ciphertexts with encryption of random msg

Our scheme

Benign Proof Requirements

- 1. Re-Randomizability
- 2. Simulation-Soundness*

ReRandomization is a linear transformation

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

- 1. Simulate benign proofs
- 2. Produce ill-formed Challenge Ciphertexts
- 3. Adaptively inject randomness into the hash of ciphertexts*
- 4. Replace with random msg

Efficiency

We compare privately-verifiable schemes only, in terms of group elements and exponentiations

	Size of C	Cost of Enc/Rand	Group Setting	Tight
[FFHR19]	3 G1 + 2 G2 + GT	4 E1 + 5 E2 + 2 ET + 5 P	Туре-3	
Our work	7 G1 + 2 GT	14 E1 + 2 ET + 14 P	Туре-1	\checkmark
Assumption: Matrix DDH				

Open Problems

- Instantiation based on type-3 pairings
- Provide a generic framework to instantiate tightly-secure Rand-RCCA PKEs
- Tightly-secure Mix-Nets from Leakage-Resilient CCA

All the papers on Multi-Ciphertext Rand RCCA

Thanks!

ia.cr.org/2023/152

References

[CKNO3] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. CRYPTO 2003

[FFHR19] Antonio Faonio, Dario Fiore, Javier Herranz, and Carla R`afols. Structure-preserving and re-randomizable RCCA-secure public key encryption and its applications. ASIACRYPT 2019

[FR22] Antonio Faonio and Luigi Russo. Mix-nets from re-randomizable and replayable cca-secure public-key encryption. SCN 2022

[GHK17] Romain Gay, Dennis Hofheinz, and Lisa Kohl. Kurosawa-desmedt meets tight security. CRYPTO 2017

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-secure encryption without pairings. EUROCRYPT 2016

[GroO4] Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. TCC 2004

[HLLG19] Shuai Han, Shengli Liu, Lin Lyu, and Dawu Gu. Tight leakage-resilient CCA-security from quasi-adaptive hash proof system. CRYPTO 2019

[Hof17] Dennis Hofheinz. Adaptive partitioning. EUROCRYPT 2017

[NAP+14] Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday, Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. ACM CCS 2014

[PR07] Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption. CRYPTO 2007

[PR17] Olivier Pereira and Ronald L. Rivest. Marked mix-nets. FC 2017 Workshops

A weak definition

 $(A,B) \rightarrow c_1$ (C,D) → c_2

 $\frac{\text{Guarded}}{\text{IF M} \in \{A,B,C,D\}}:$ REPLAY

Our Malleable NIDVPS

- Inspired by the work of [ABP15]: disjunction of two SPHFs for two languages based on diverse vector spaces.
- In our case the prover can generate proofs for elements that belong to the span of of matrix D.
- Soundness even in presence of simulated proofs for elements in two (possibly distinct) super-spaces of the prescribed linear space

Our Malleable NIDVPS

To prove that $[u]_1 = [D]_1 r$, compute $k^T [D \otimes D]_T \cdot (r \otimes r)$

To verify/simulate compute $k^{T}[u \otimes u]_{T}$

To update the proof, add $k^{T}[I \otimes D]^{T} \cdot [u \otimes s]_{1} + k^{T}[D \otimes i]_{1} \cdot [s \otimes u]_{1} + k^{T}[D \otimes D]_{T} \cdot (s \otimes s)$

CREDITS: The presentation template was created by Slidesgo, and includes icons by Flaticon