Generic Models for Group Actions

Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, <u>Jonas Lehmann</u>, Doreen Riepel

Ruhr University Bochum

May 8th, 2023

• Existing constructions mostly based on lattices

- Existing constructions mostly based on lattices
- Popular alternative: Cryptographic Group Actions
 - Based on isogenies

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

- Identity: $e \star x = x$
- Compatibility: $g \star (h \star x) = (g + h) \star x$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

DLOG

Given x and $g \star x$ compute g.

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

DLOG

Given x and $g \star x$ compute g.

CDH

Given x, $g \star x$ and $h \star x$ compute $(g+h) \star x$.

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

DLOG

Given x and $g \star x$ compute g.

CDH

Given x, $g \star x$ and $h \star x$ compute $(g+h) \star x$.

DDH

Given x, $g \star x$, $h \star x$ and z decide if $z = (g+h) \star x$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

DLOG

Given x and $g \star x$ compute g.

CDH

Given x, $g \star x$ and $h \star x$ compute $(g+h) \star x$.

DDH

Given x, $g \star x$, $h \star x$ and z decide if $z = (g + h) \star x$

Quantum Hardness

Kuperberg (subexponential)

Strong CDH

Given x, $g \star x$, $h \star x$ compute $(g + h) \star x$

Strong CDH

Given x, $g \star x$, $h \star x$ compute $(g + h) \star x$ while having access to oracles

 $\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(h \star x, \cdot, \cdot).$

Strong CDH

Given x, $g \star x$, $h \star x$ compute $(g + h) \star x$ while having access to oracles

$$\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(h \star x, \cdot, \cdot).$$

• Underlies the security of the CSIDH key exchange [DHK⁺22]

Strong Square Inverse CDH

Strong Square Inverse CDH

Given x, $g\star x$ compute a tuple $(y,2g\star y,-g\star y)$

Strong Square Inverse CDH

Given x, $g\star x$ compute a tuple $(y,2g\star y,-g\star y)$ while having access to oracles

 $\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(2g \star x, \cdot, \cdot).$

Strong Square Inverse CDH

Given $x,\ g\star x$ compute a tuple $(y,2g\star y,-g\star y)$ while having access to oracles

$$\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(2g \star x, \cdot, \cdot).$$

 Underlies the security of group action based PAKE [AEK⁺22] and oblivious transfer [LGd21]

Strong Square Inverse CDH

Given $x,\ g\star x$ compute a tuple $(y,2g\star y,-g\star y)$ while having access to oracles

$$\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \text{and} \qquad \mathsf{DDH}(2g \star x, \cdot, \cdot).$$

 Underlies the security of group action based PAKE [AEK⁺22] and oblivious transfer [LGd21]

Quantum Hardness

Unclear

This Work

• Define the **generic** group action model

- Define the **generic** group action model
 - ullet Lifting Lemma: GGAM \subset GGM under certain conditions

- Define the **generic** group action model
 - ullet Lifting Lemma: GGAM \subset GGM under certain conditions
 - Classical lower bounds for DLOG, CDH ...

- Define the **generic** group action model
 - Lifting Lemma: GGAM ⊂ GGM under certain conditions
 - Classical lower bounds for DLOG, CDH ...
 - Impossibility of *quantum* lower bounds

- Define the **generic** group action model
 - Lifting Lemma: GGAM ⊂ GGM under certain conditions
 - Classical lower bounds for DLOG, CDH . . .
 - Impossibility of quantum lower bounds
- Define the algebraic group action model

- Define the **generic** group action model
 - Lifting Lemma: GGAM ⊂ GGM under certain conditions
 - Classical lower bounds for DLOG, CDH . . .
 - Impossibility of quantum lower bounds
- Define the algebraic group action model
 - Classical and quantum reductions between (non-standard) assumptions and DLOG

 $\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$, labeling function $\sigma: \mathcal{X} \to \{0,1\}^n$

 $\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$, labeling function $\sigma: \mathcal{X} \to \{0,1\}^n$

 $\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$, labeling function $\sigma:\mathcal{X}\to\{0,1\}^n$

 $\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$, labeling function $\sigma:\mathcal{X}\to\{0,1\}^n$

 $\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$, labeling function $\sigma: \mathcal{X} \to \{0,1\}^n$

 $\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$, labeling function $\sigma: \mathcal{X} \to \{0,1\}^n$

 $\star:\mathcal{G} imes\mathcal{X} o\mathcal{X}$, labeling function $\sigma:\mathcal{X} o\{0,1\}^n$

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$
, labeling function $\sigma:\mathcal{X}\to\{0,1\}^n$

Generic Group Action $\star: \mathcal{G} \times \{0,1\}^n \to \{0,1\}^n$

Runtime measured in # oracle queries

$$\star: \mathcal{G} \times \mathcal{X} \to \mathcal{X}$$
, labeling function $\sigma: \mathcal{X} \to \{0,1\}^n$

Generic Group Action $\star : \mathcal{G} \times \{0,1\}^n \to \{0,1\}^n$

Runtime measured in # oracle queries

Lemma (Lifting Lemma)

If $|\mathcal{G}|+1$ is prime then the GGM contains the GGAM.

Lemma (Lifting Lemma)

If $|\mathcal{G}| + 1$ is prime then the GGM contains the GGAM.

⇒ In GGM exponents are **multiplicative** instead of **additive**.

Lemma (Lifting Lemma)

If $|\mathcal{G}| + 1$ is prime then the GGM contains the GGAM.

 \Rightarrow In GGM exponents are **multiplicative** instead of **additive**.

Corollary

If $|\mathcal{G}|+1$ is prime then for a DLOG adversary $\mathcal A$ in the GGAM

$$\epsilon \le q^2/N$$
.

Lemma (Lifting Lemma)

If $|\mathcal{G}| + 1$ is prime then the GGM contains the GGAM.

 \Rightarrow In GGM exponents are **multiplicative** instead of **additive**.

Corollary

|f||G|+1 is prime then for a DLOG adversary ${\cal A}$ in the GGAM

$$\epsilon \le \mathcal{O}(q^2/N).$$

Ettinger-Høyer:

Ettinger-Høyer:

• Generic quantum algorithm solving DLOG

Ettinger-Høyer:

- Generic quantum algorithm solving DLOG
- Polynomial **oracle** complexity

Ettinger-Høyer:

- Generic quantum algorithm solving DLOG
- Polynomial oracle complexity
- ⇒ Not even DLOG is hard

Algebraic Group Action Model

$$\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$$

GAME

$$\star:\mathcal{G} imes\mathcal{X} o\mathcal{X}$$

Runtime measured in # unit operations

Results in the QAGAM

Results in the QAGAM

Strong CDH (St-CDH)

Given x, $g \star x$, $h \star x$ compute $(g + h) \star x$ while having access to oracles

 $\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(h \star x, \cdot, \cdot).$

Results in the QAGAM

Strong CDH (St-CDH)

Given x, $g \star x$, $h \star x$ compute $(g + h) \star x$ while having access to oracles

$$\mathsf{DDH}(g \star x, \cdot, \cdot) \qquad \mathsf{and} \qquad \mathsf{DDH}(h \star x, \cdot, \cdot).$$

Theorem (DLOG \Rightarrow St-CDH)

For every **quantum** adversary \mathcal{A} in the **quantum** algebraic group action model against St-CDH there exists \mathcal{B}, \mathcal{C} against DLOG with

$$\epsilon_{\mathcal{A}} \le \sqrt{(q+1) \cdot \epsilon_{\mathcal{B}}} + \epsilon_{\mathcal{C}}.$$

Summary

- Adapted the GGM and AGM to the group action setting.
 - Include further algebraic properties of isogenies like twists.
- Proved information-theoretic lower bounds in the generic group action model.
- Gave algebraic reductions between non-standard assumptions and DLOG in the algebraic group action model.

https://ia.cr/2023/186

References I

- [AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen Riepel. Password-authenticated key exchange from group actions. In Yevgeniy Dodis and Thomas Shrimpton, editors, *CRYPTO 2022, Part II*, volume 13508 of *LNCS*, pages 699–728. Springer, Heidelberg, August 2022.
- [DHK⁺22] Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas Lehmann, and Doreen Riepel. Group action key encapsulation and non-interactive key exchange in the QROM. In Shweta Agrawal and Dongdai Lin, editors, *ASIACRYPT 2022, Part II*, volume 13792 of *LNCS*, pages 36–66. Springer, Heidelberg, December 2022.
 - [LGd21] Yi-Fu Lai, Steven D. Galbraith, and Cyprien de Saint Guilhem. Compact, efficient and UC-secure isogeny-based oblivious transfer. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 213–241. Springer, Heidelberg, October 2021.