
Structure-Preserving Compilers
from New Notions of Obfuscations

Danilo Francati
Aarhus University

Matteo Campanelli
Protocol Labs

Claudio Orlandi
Aarhus University

Obfuscator
PPT Obfuscator

C : {0,1}n ⟶ {0,1}mCircuit.

C̃ ← 𝖮𝖻𝖿(1λ, C)PPT Obfuscator.

Obfuscator
PPT Obfuscator

C : {0,1}n ⟶ {0,1}mCircuit.

C̃ ← 𝖮𝖻𝖿(1λ, C)PPT Obfuscator.

∀x ∈ {0,1}n, C(x) = C̃ (x)(1) Correctness.

∃p(⋅), ∀C, |𝖮𝖻𝖿(1λ, C) | ≤ p(|C |)(2) Polynomial Slowdown.

Security

Security
(1) Leakage

Security
SIM-based

The obfuscation
can be simulated.

(1) Leakage

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

(1) Leakage

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

(1) Leakage (2) Distribution

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

(1) Leakage (2) Distribution

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution (3) Functionality

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C
VS.

Functionally Eq.

∀x, C0(x) = C1(x)

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C
VS.

Functionally Eq.

∀x, C0(x) = C1(x)
VS.

Differing-inputs
Find such that

 is hard.
x

C0(x) ≠ C1(x)

… and more …

Security
SIM-based

The obfuscation
can be simulated.

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

VS.

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C
VS.

Functionally Eq.

∀x, C0(x) = C1(x)
VS.

Differing-inputs
Find such that

 is hard.
x

C0(x) ≠ C1(x)

… and more …

Existing Notions

Virtual Black Box (VBB).

Indistinguishability Obfuscation (iO).

Differing-input Obfuscation (diO).

VBB

VBB-simulation

For every PPT adversary , there exists a PPT simulator such that for every
sampler , we have:

where .

𝖠 𝖲𝗂𝗆
𝖲

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C), α) = 1} ≈c {𝖲𝗂𝗆C(⋅)(1λ,1|C|, α) = 1}
(C, α) ← 𝖲(1λ)

VBB

VBB-simulation

For every PPT adversary , there exists a PPT simulator such that for every
sampler , we have:

where .

𝖠 𝖲𝗂𝗆
𝖲

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C), α) = 1} ≈c {𝖲𝗂𝗆C(⋅)(1λ,1|C|, α) = 1}
(C, α) ← 𝖲(1λ)

Auxiliary Information

Security
SIM-based

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

VS.

VS.
Functionally Eq.

VS.
Differing-inputs

… and more …

∀x, C0(x) = C1(x)

Find such that
 is hard.

x
C0(x) ≠ C1(x)

The obfuscation
can be simulated.

Security
SIM-based

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

(1) Leakage (2) Distribution (3) Functionality

No restriction

∀C

IND-based

Two obfuscations are
indistinguishable.

VS.

Every Circuit

∀C or ∀C0, C1

VS.

VS.
Functionally Eq.

VS.
Differing-inputs

… and more …

∀x, C0(x) = C1(x)

Find such that
 is hard.

x
C0(x) ≠ C1(x)

The obfuscation
can be simulated.

Applications of VBB

Applications of VBB
VBB is magic. You can obfuscate any program/circuit

and it will work as an ideal oracle.

Applications of VBB
VBB is magic. You can obfuscate any program/circuit

and it will work as an ideal oracle.

VBB can be used to implement structure-preserving compilers.

Applications of VBB
VBB is magic. You can obfuscate any program/circuit

and it will work as an ideal oracle.

VBB can be used to implement structure-preserving compilers.

Example:

 Return
Ck(m) :

c ← 𝖤𝗇𝖼(k, m)

Applications of VBB
VBB is magic. You can obfuscate any program/circuit

and it will work as an ideal oracle.

VBB can be used to implement structure-preserving compilers.

Example:

 Return
Ck(m) :

c ← 𝖤𝗇𝖼(k, m)
𝖮𝖻𝖿(1λ, Ck) → C̃ Set

Obtain a PKE
pk = C̃

Applications of VBB
VBB is magic. You can obfuscate any program/circuit

and it will work as an ideal oracle.

VBB can be used to implement structure-preserving compilers.

Example:

 Return
Ck(m) :

c ← 𝖤𝗇𝖼(k, m)
𝖮𝖻𝖿(1λ, Ck) → C̃ Set

Obtain a PKE
pk = C̃

Some programs/circuits cannot
be VBB-obfuscated
(unconditionally).

Some SKEs cannot be
obfuscated into PKEs

(unconditionally).

Impossibility Results [*]

[*] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs.

iO
iO-Sampler

A sampler is an iO-sampler if

where .

𝖲
ℙ [∀x ∈ {0,1}n, C0(x) = C1(x)] ≥ 1 − 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

iO
iO-Sampler

A sampler is an iO-sampler if

where .

𝖲
ℙ [∀x ∈ {0,1}n, C0(x) = C1(x)] ≥ 1 − 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every iO-Sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

diO
diO-Sampler

A sampler is an diO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
ℙ [C0(x) ≠ C1(x) x ← 𝖠(1λ, C0, C1, α)] ≤ 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

diO
diO-Sampler

A sampler is an diO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
ℙ [C0(x) ≠ C1(x) x ← 𝖠(1λ, C0, C1, α)] ≤ 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

Circuits are known

diO
diO-Sampler

A sampler is an diO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
ℙ [C0(x) ≠ C1(x) x ← 𝖠(1λ, C0, C1, α)] ≤ 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every diO-sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

Security

IND-based

Two obfuscations are
indistinguishable.

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

(1) Leakage (2) Distribution (3) Functionality

SIM-based

VS.

Every Circuit

∀C or ∀C0, C1

VS.

No restriction

VS.
The obfuscation

can be simulated.
∀C

Functionally Eq.

∀x, C0(x) = C1(x)
VS.

Differing-inputs
Find such that

 is hard.
x

C0(x) ≠ C1(x)

… and more …

Security

IND-based

Two obfuscations are
indistinguishable.

Samplers
(C, α) ← 𝖲(1λ)

or
(C0, C1, α) ← 𝖲(1λ)

(1) Leakage (2) Distribution (3) Functionality

SIM-based

VS.

Every Circuit

∀C or ∀C0, C1

VS.

No restriction

VS.
The obfuscation

can be simulated.
∀C

Functionally Eq.

∀x, C0(x) = C1(x)
VS.

Differing-inputs
Find such that

 is hard.
x

C0(x) ≠ C1(x)

… and more …

Limitations of iO and diO

Limitations of iO and diO

They are not powerful enough to implement
structure-preserving compilers.

Limitations of iO and diO

They are not powerful enough to implement
structure-preserving compilers.

Intuition

We need to include a secret into the circuit.

iO/diO are not enough to deal with secrets.

Can we obtain structure-preserving transformations
from notions of obfuscation weaker than VBB?

New Notions of Obfuscation

Virtual Black Box (VBB).

Indistinguishability Obfuscation (iO).

Differing-input Obfuscation (diO).

New Notions of Obfuscation

Virtual Black Box (VBB).

Indistinguishability Obfuscation (iO).

Differing-input Obfuscation (diO).

Oracle Differing-input Obfuscation (odiO).

New Notions of Obfuscation

Virtual Black Box (VBB).

Indistinguishability Obfuscation (iO).

Differing-input Obfuscation (diO).

Oracle Indistinguishability Obfuscation (oiO).

Oracle Differing-input Obfuscation (odiO).

odiO
odiO-Sampler

A sampler is an odiO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
ℙ [C0(x) ≠ C1(x) x ← 𝖠C0(⋅),C1(⋅)(1λ,1|C|, α)] ≤ 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every odiO-sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

odiO
odiO-Sampler

A sampler is an odiO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
ℙ [C0(x) ≠ C1(x) x ← 𝖠C0(⋅),C1(⋅)(1λ,1|C|, α)] ≤ 𝗇𝖾𝗀𝗅(λ)

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every odiO-sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

Circuits are secret

oiO
oiO-Sampler

A sampler is an oiO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
{𝖠C0(⋅)(1λ,1|C0|, α) = 1} ≈c {𝖠C1(⋅)(1λ,1|C1|α) = 1}

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every odiO-sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

oiO
oiO-Sampler

A sampler is an oiO-sampler if for every PPT adversary we have:

where .

𝖲 𝖠
{𝖠C0(⋅)(1λ,1|C0|, α) = 1} ≈c {𝖠C1(⋅)(1λ,1|C1|α) = 1}

(C0, C1, α) ← 𝖲(1λ)

Indistinguishability

For every odiO-sampler , every PPT adversary , we have:

where .

𝖲 𝖠

{𝖠(1λ, 𝖮𝖻𝖿(1λ, C0), α) = 1} ≈c {𝖠(1λ, 𝖮𝖻𝖿(1λ, C1), α) = 1}
(C0, C1, α) ← 𝖲(1λ)

Circuits are secret

iO VS. diO VS. odiO VS. oiO

iO VS. diO VS. odiO VS. oiO
IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO
IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO

iO

⋅ 𝖲iO

IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO

diO

⋅ 𝖲diO

iO

⋅ 𝖲iO

IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO

odiO

⋅ 𝖲odiO

diO

⋅ 𝖲diO

iO

⋅ 𝖲iO

IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO

oiO

⋅ 𝖲oiO

odiO

⋅ 𝖲odiO

diO

⋅ 𝖲diO

iO

⋅ 𝖲iO

IND-based def.

They have the same
IND-based definition.

Samplers

iO VS. diO VS. odiO VS. oiO

oiO

⋅ 𝖲oiO

odiO

⋅ 𝖲odiO

diO

⋅ 𝖲diO

iO

⋅ 𝖲iO

IND-based def.

They have the same
IND-based definition.

Implications

𝗂𝖮 ⇐ 𝖽𝗂𝖮 ⇐ 𝗈𝖽𝗂𝖮 ⇐ 𝗈𝗂𝖮

oiO (odiO) VS. VBB

oiO (odiO) VS. VBB

SIM-based def. vs. IND-based def.

(VBB) SIM-based def. (oiO) IND-based def.⇒

oiO (odiO) VS. VBB

SIM-based def. vs. IND-based def.

(VBB) SIM-based def. (oiO) IND-based def.⇒

Result

𝗈𝖽𝗂𝖮 ⇐ 𝗈𝗂𝖮 ⇐ 𝖵𝖡𝖡

Applications of odiO

odiO-based structure-preserving compilers

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

IV-based symmetric key encryption

Public key encryption
↓

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

IV-based symmetric key encryption

Public key encryption
↓

IV-based SKE
𝖤𝗇𝖼(k, m; iv) = (c, iv)

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

IV-based symmetric key encryption

Public key encryption
↓

IV-based SKE
𝖤𝗇𝖼(k, m; iv) = (c, iv)

DV/PV non-interactive argument system

DV/PV non-interactive argument system
Designated Verifier (DV)

DV/PV non-interactive argument system
Designated Verifier (DV)

Syntax.

•
•
•

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) → (crs, vk)
𝖯𝗋𝗈𝗏𝖾(crs, x, ω) → π
𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) → b

DV/PV non-interactive argument system
Designated Verifier (DV)

Syntax.

•
•
•

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) → (crs, vk)
𝖯𝗋𝗈𝗏𝖾(crs, x, ω) → π
𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) → b

Selective Soundness.
For every , every PPT adversary , we have: x ∉ ℒ 𝖠

ℙ 𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) = 1
(crs, vk) ← 𝖲𝖾𝗍𝗎𝗉(1λ, ℛ)

π ← 𝖠𝖵𝖾𝗋𝗂𝖿𝗒(vk,⋅,⋅)(1λ, crs, x)
≤ 𝗇𝖾𝗀𝗅(λ)

DV/PV non-interactive argument system
Designated Verifier (DV)

Syntax.

•
•
•

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) → (crs, vk)
𝖯𝗋𝗈𝗏𝖾(crs, x, ω) → π
𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) → b

Selective Soundness.
For every , every PPT adversary , we have: x ∉ ℒ 𝖠

ℙ 𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) = 1
(crs, vk) ← 𝖲𝖾𝗍𝗎𝗉(1λ, ℛ)

π ← 𝖠𝖵𝖾𝗋𝗂𝖿𝗒(vk,⋅,⋅)(1λ, crs, x)
≤ 𝗇𝖾𝗀𝗅(λ)

Publicly Verifiable (PV)

Syntax.

•
•
•

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) → crs
𝖯𝗋𝗈𝗏𝖾(crs, x, ω) → π
𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) → b

Selective Soundness.
For every , every PPT adversary , we have: x ∉ ℒ 𝖠

ℙ 𝖵𝖾𝗋𝗂𝖿𝗒(vk, x, π) = 1
(crs, vk) ← 𝖲𝖾𝗍𝗎𝗉(1λ, ℛ)

π ← 𝖠(1λ, crs, x)
≤ 𝗇𝖾𝗀𝗅(λ)

odiO-based Compiler

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler
𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋

vk*, C1 = C𝗏𝖾𝗋
vk*,x*, α = crs*)

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler
𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋

vk*, C1 = C𝗏𝖾𝗋
vk*,x*, α = crs*)

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*First Step:

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler
𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋

vk*, C1 = C𝗏𝖾𝗋
vk*,x*, α = crs*)

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*First Step:

Otherwise, the underlying (DV) is not sound.Π*

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler
𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋

vk*, C1 = C𝗏𝖾𝗋
vk*,x*, α = crs*)

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*First Step:

Otherwise, the underlying (DV) is not sound.Π*
Here, we need oracles.

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*

𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋
vk*, C1 = C𝗏𝖾𝗋

vk*,x*, α = crs*)

First Step:

Replace with .C𝗏𝖾𝗋
vk* C𝗏𝖾𝗋

vk*,x*Second Step:

odiO-based Compiler
Compiler

1.
2.
3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*

𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋
vk*, C1 = C𝗏𝖾𝗋

vk*,x*, α = crs*)

First Step:

Replace with .C𝗏𝖾𝗋
vk* C𝗏𝖾𝗋

vk*,x*Second Step:

odiO-based Compiler
Compiler

1.
2.
2.

3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*,x*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*

𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋
vk*, C1 = C𝗏𝖾𝗋

vk*,x*, α = crs*)

First Step:

Replace with .C𝗏𝖾𝗋
vk* C𝗏𝖾𝗋

vk*,x*Second Step:

odiO-based Compiler
Compiler

1.
2.
2.

3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*,x*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*

𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋
vk*, C1 = C𝗏𝖾𝗋

vk*,x*, α = crs*)

First Step:

Replace with .C𝗏𝖾𝗋
vk* C𝗏𝖾𝗋

vk*,x*Second Step:

Otherwise, we can distinguish and .𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋
vk*) 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*,x*)

odiO-based Compiler
Compiler

1.
2.
2.

3. Return

1. Return

1. Return

𝖲𝖾𝗍𝗎𝗉(1λ, ℛ) :
(crs*, vk*) ← 𝖲𝖾𝗍𝗎𝗉*(1λ, ℛ)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*)
C̃ ← 𝖮𝖻𝖿(1λ, C𝗏𝖾𝗋

vk*,x*)
crs = (crs*, C̃)

𝖯𝗋𝗈𝗏𝖾(crs, x, ω) :
π ← 𝖯𝗋𝗈𝗏𝖾(crs*, x, ω)

𝖵𝖾𝗋𝗂𝖿𝗒(crs, x, π) :
C̃ (x, π)

Circuit C𝗏𝖾𝗋
vk*

1. Return
C𝗏𝖾𝗋

vk*(x, π) :
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Circuit C𝗏𝖾𝗋
vk*,x*

1. If , return .
2. Return

C𝗏𝖾𝗋
vk*,x*(x, π) :

x = x* 0
𝖵𝖾𝗋𝗂𝖿𝗒*(vk*, x, π)

Sampler

 is an odiO-sampler.∀x* ∉ ℒ, 𝖲x*

𝖲x*(1λ) → (C0 = C𝗏𝖾𝗋
vk*, C1 = C𝗏𝖾𝗋

vk*,x*, α = crs*)

First Step:

Replace with .C𝗏𝖾𝗋
vk* C𝗏𝖾𝗋

vk*,x*Second Step:

’s advantage is .𝖠 0Third Step:

Other Results

Other Results
oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption

Public key encryption
↓

Other Results
oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption

Public key encryption
↓

General Purpose odiO/oiO-obfuscators do not exist (unconditionally)

There exists an odiO/oiO-sampler that cannot be odiO/oiO-obfuscated.

Other Results
oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption

Public key encryption
↓

General Purpose odiO/oiO-obfuscators do not exist (unconditionally)

There exists an odiO/oiO-sampler that cannot be odiO/oiO-obfuscated.

Key Ind. SKE PKE is impossible (unconditionally)→

Does not exist an obfuscator able to implement this compiler.𝖮𝖻𝖿

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

IV-based symmetric key encryption

Public key encryption
↓

IV-based SKE
𝖤𝗇𝖼(k, m; iv) = (c, iv)

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems
↓

Message authentication codes

Signatures
↓

IV-based symmetric key encryption

Public key encryption
↓

IV-based SKE
𝖤𝗇𝖼(k, m; iv) = (c, iv)

Puncturable PRF+

Thank You!

