Structure-Preserving Compilers from New Notions of Obfuscations

Matteo Campanelli

Protocol Labs

Danilo Francati

Aarhus University

Claudio Orlandi

Aarhus University

Obfuscator

PPT Obfuscator

Circuit. $C: \{0,1\}^n \longrightarrow \{0,1\}^m$ PPT Obfuscator. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C)$

Obfuscator

PPT Obfuscator. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C)$

(1) Correctness. $\forall x \in \{0,1\}^n, C(x) = C(x)$ (2) Polynomial Slowdown. $\exists p(\cdot), \forall C, |Obf(1^{\lambda}, C)| \leq p(|C|)$

PPT Obfuscator

Circuit. $C: \{0,1\}^n \longrightarrow \{0,1\}^m$

SIM-based

The obfuscation can be simulated.

SIM-based

The obfuscation can be simulated.

VS.

IND-based

Two obfuscations are indistinguishable.

SIM-based

The obfuscation can be simulated.

VS.

IND-based

Two obfuscations are indistinguishable.

Security (2) Distribution

SIM-based

The obfuscation can be simulated.

 $\forall C$

VS.

IND-based

Two obfuscations are indistinguishable.

Security (2) Distribution

Every Circuit

$$\forall C_0, C_1$$

SIM-based

The obfuscation can be simulated.

(2) D Eve

VS.

IND-based

Two obfuscations are indistinguishable.

Sa (C, α) ($C_0, C_1,$

Security (2) Distribution

Every Circuit

$$\forall C_0, C_1$$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

SIM-based

The obfuscation can be simulated.

(2) D Eve

VS.

IND-based

Two obfuscations are indistinguishable.

Sa (C, α) (C_0, C_1, α)

Security (2) Distribution

(3) Functionality

Every Circuit

∀*C*₀, *C*₁

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

SIM-based

The obfuscation can be simulated. $\forall C$

VS.

IND-based

Two obfuscations are indistinguishable.

Security (2) Distribution

Every Circuit

 $\forall C_0, C_1$

(3) Functionality No restriction

 $\forall C$

VS.

Samplers

$$(C, \alpha) \leftarrow S(1^{\lambda})$$

or
$$(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$$

SIM-based

The obfuscation can be simulated. $\forall C$

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

Every Circuit

or

 $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$

SIM-based

The obfuscation can be simulated. $\forall C$

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

Every Circuit

or

 $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$ VS. **Differing-inputs** Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

SIM-based

The obfuscation can be simulated.

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

 $\forall C$ or $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$ VS. **Differing-inputs** Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

Virtual Black Box (VBB).

Differing-input Obfuscation (diO).

Indistinguishability Obfuscation (iO).

Existing Notions

VBB-simulation

sampler S, we have:

where $(C, \alpha) \leftarrow S(1^{\lambda})$.

For every PPT adversary A, there exists a PPT simulator Sim such that for every

$\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C),\alpha)=1\right\}\approx_{c}\left\{\mathsf{Sim}^{C(\cdot)}(1^{\lambda},1^{|C|},\alpha)=1\right\}$

VBB-simulation

sampler S, we have:

 $\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C),\alpha)=1\right\}\approx_{c}\left\{\mathsf{Sim}^{C(\cdot)}(1^{\lambda},1^{|C|},\alpha)=1\right\}$ where $(C, \alpha) \leftarrow S(1^{\lambda})$. **Auxiliary Information**

For every PPT adversary A, there exists a PPT simulator Sim such that for every

SIM-based

The obfuscation can be simulated. $\forall C$ or

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

Every Circuit

 $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$ VS. **Differing-inputs** Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

SIM-based

The obfuscation can be simulated.

VS.

Two obfuscations are indistinguishable.

Samplers (C, α) $(C_0, C_1,$

Security (2) Distribution

 $\forall C$ or $\forall C_0, C_1$

VS.

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. $\forall x, C_0(x) = C_1(x)$ VS. Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

VBB is magic. You can obfuscate any program/circuit and it will work as an ideal oracle.

- **VBB** is magic. You can obfuscate any program/circuit and it will work as an ideal oracle.
- **VBB** can be used to implement structure-preserving compilers.

Example:

 $C_k(m)$: Return $c \leftarrow \text{Enc}(k, m)$

- **VBB** is magic. You can obfuscate any program/circuit and it will work as an ideal oracle.
- **VBB** can be used to implement structure-preserving compilers.

Example:

- **VBB** is magic. You can obfuscate any program/circuit and it will work as an ideal oracle.
- **VBB** can be used to implement structure-preserving compilers.

Example:

 $\underbrace{\operatorname{Obf}(1^{\lambda}, C_{k}) \to \widetilde{C}}_{\operatorname{Obtain a PKE}} \left[\begin{array}{c} \operatorname{Set} pk = \widetilde{C} \\ \operatorname{Obtain a PKE} \end{array} \right]$

 $C_k(m)$: Return $c \leftarrow \text{Enc}(k,m)$

> [*] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.

- **VBB** is magic. You can obfuscate any program/circuit and it will work as an ideal oracle.
- **VBB** can be used to implement structure-preserving compilers.

Impossibility Results [*]

Some programs/circuits cannot

be **VBB**-obfuscated (unconditionally).

Some SKEs cannot be obfuscated into PKEs (unconditionally).

A sampler S is an **iO**-sampler if $\mathbb{P}\left[\forall x \in \{0,1\}^n, C_0(x) = C_1(x)\right] \ge 1 - \mathsf{negl}(\lambda)$ where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

iO

iO-Sampler

A sampler S is an **iO**-sampler if $\mathbb{P}\left[\forall x \in \{0,1\}^n, C_0(x)\right]$ where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

Indistinguishability

For every **iO**-Sampler S, every PPT adversary A, we have:

 $\left\{ \mathsf{A}(1^{\lambda}, \mathsf{Obf}(1^{\lambda}, C_0), \alpha) = 1 \right\}$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

iO

iO-Sampler

$$x) = C_1(x) \Big] \ge 1 - \mathsf{negl}(\lambda)$$

$$\approx_c \left\{ \mathsf{A}(1^\lambda, \mathsf{Obf}(1^\lambda, C_1), \alpha) = 1 \right\}$$

A sampler S is an **diO**-sampler if for every PPT adversary A we have: $\mathbb{P}\left[C_0(x) \neq C_1(x) \left| x \leftarrow \mathsf{A}(1^{\lambda}, C_0, C_1, \alpha)\right] \le \mathsf{negl}(\lambda) \right]$ where $(C_0, C_1, \alpha) \leftarrow \mathsf{S}(1^{\lambda})$.

diO

diO-Sampler

diO

diO-Sampler

 $\mathbb{P}\left[C_0(x) \neq C_1(x) \middle| x \leftarrow \mathsf{A}(1^{\lambda}, C_0, C_1, \alpha)\right] \leq \mathsf{negl}(\lambda)$ where $(C_0, C_1, \alpha) \leftarrow \mathsf{S}(1^{\lambda})$.

Indistinguishability

For every **diO**-sampler S, every PPT adversary A, we have:

$$\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C_0),\alpha)=1\right\}\approx_c\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C_1),\alpha)=1\right\}$$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

diO

diO-Sampler

SIM-based

The obfuscation can be simulated. $\forall C$ or

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

Every Circuit

 $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality No restriction $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$ VS. **Differing-inputs** Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

The obfuscation can be simulated.

VS.

IND-based

Two obfuscations are indistinguishable.

 (C, α) $(C_0, C_1,$

Security (2) Distribution

 $\forall C$ or $\forall C_0, C_1$

VS.

Samplers

)
$$\leftarrow S(1^{\lambda})$$

or
 α) $\leftarrow S(1^{\lambda})$

(3) Functionality $\forall C$ VS. Functionally Eq. $\forall x, C_0(x) = C_1(x)$ VS. **Differing-inputs** Find *x* such that $C_0(x) \neq C_1(x)$ is hard.

... and more ...

Limitations of iO and diO

Limitations of iO and diO

They are not powerful enough to implement structure-preserving compilers.

Limitations of iO and diO

They are not powerful enough to implement structure-preserving compilers.

Intuition

- We need to include a secret into the circuit.
- **iO/diO** are not enough to deal with secrets.
Can we obtain structure-preserving transformations from notions of obfuscation weaker than **VBB**?

New Notions of Obfuscation

Virtual Black Box (VBB).

Differing-input Obfuscation (**diO**).

Indistinguishability Obfuscation (iO).

New Notions of Obfuscation

Virtual Black Box (VBB).

Differing-input Obfuscation (**diO**).

Indistinguishability Obfuscation (iO).

• Oracle Differing-input Obfuscation (odiO).

New Notions of Obfuscation

Virtual Black Box (VBB).

- Oracle Indistinguishability Obfuscation (oiO). • Oracle Differing-input Obfuscation (odiO).

Differing-input Obfuscation (**diO**).

Indistinguishability Obfuscation (iO).

odiO

odiO-Sampler

A sampler S is an **odiO**-sampler if for every PPT adversary A we have: $\mathbb{P}\left[C_0(x) \neq C_1(x) \middle| x \leftarrow \mathsf{A}^{C_0(\cdot), C_1(\cdot)}(1^{\lambda}, 1^{|C|}, \alpha)\right] \leq \mathsf{negl}(\lambda)$ where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

Indistinguishability

For every **odiO**-sampler S, every PPT adversary A, we have:

$$\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C_0),\alpha)=1\right\}\approx_c\left\{\mathsf{A}(1^{\lambda},\mathsf{Obf}(1^{\lambda},C_1),\alpha)=1\right\}$$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

Indistinguishability

For every **odiO**-sampler S, every PPT adversary A, we have:

 $\{A(1^{\lambda}, Obf(1^{\lambda}, C_0), \alpha) = 1\}$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

odiO

odiO-Sampler

$$\approx_c \left\{ \mathsf{A}(1^\lambda, \mathsf{Obf}(1^\lambda, C_1), \alpha) = 1 \right\}$$

A sampler S is an **oiO**-sampler if for every PPT adversary A we have: $\left\{\mathsf{A}^{C_0(\cdot)}(1^{\lambda}, 1^{|C_0|}, \alpha) = 1\right\} \approx_c \left\{\mathsf{A}^{C_1(\cdot)}(1^{\lambda}, 1^{|C_1|}\alpha) = 1\right\}$ where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

Indistinguishability

For every **odiO**-sampler S, every PPT adversary A, we have:

 $\{A(1^{\lambda}, Obf(1^{\lambda}, C_0), \alpha) = 1\}$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

oiO

oiO-Sampler

$$\approx_c \left\{ \mathsf{A}(1^\lambda, \mathsf{Obf}(1^\lambda, C_1), \alpha) = 1 \right\}$$

Indistinguishability

For every **odiO**-sampler S, every PPT adversary A, we have:

 $\{A(1^{\lambda}, Obf(1^{\lambda}, C_0), \alpha) = 1\}$

where $(C_0, C_1, \alpha) \leftarrow S(1^{\lambda})$.

OiO

oiO-Sampler

 $\{\mathsf{A}^{C_0(\cdot)}(1^{\lambda}, 1^{|C_0|}, \alpha) = 1\} \approx_c \{\mathsf{A}^{C_1(\cdot)}(1^{\lambda}, 1^{|C_1|}\alpha) = 1\}$

$$\approx_c \left\{ \mathsf{A}(1^\lambda, \mathsf{Obf}(1^\lambda, C_1), \alpha) = 1 \right\}$$

IND-based def.

They have the same IND-based definition.

IND-based def.

They have the same IND-based definition.

Samplers

IND-based def.

They have the same IND-based definition.

Samplers

IND-based def.

They have the same IND-based definition.

IND-based def.

They have the same IND-based definition.

IND-based def.

They have the same IND-based definition.

IND-based def.

They have the same IND-based definition.

Implications

$iO \leftarrow diO \leftarrow odiO \leftarrow oiO$

oiO (odiO) vs. VBB

oiO (odiO) vs. VBB

SIM-based def. vs. IND-based def.

(VBB) SIM-based def. \Rightarrow **(oiO)** IND-based def.

oiO (odiO) vs. VBB

SIM-based def. vs. IND-based def.

(VBB) SIM-based def. \Rightarrow **(oiO)** IND-based def.

Result

$odiO \Leftarrow oiO \Leftarrow VBB$

odiO-based structure-preserving compilers

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems

Message authentication codes ↓ Signatures

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems

IV-based symmetric key encryption Public key encryption

Message authentication codes Signatures

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems

Publicly verifiable (PV) non-interactive argument systems

IV-based SKE

Message authentication codes Signatures

IV-based symmetric key encryption Public key encryption

Enc(k, m; iv) = (c, iv)

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems Publicly verifiable (PV) non-interactive argument systems

IV-based SKE

Message authentication codes Signatures

IV-based symmetric key encryption Public key encryption

Enc(k, m; iv) = (c, iv)

Designated Verifier (DV)

Designated Verifier (DV)

Syntax.

- Setup $(1^{\lambda}, \mathscr{R}) \to (crs, vk)$
- $Prove(crs, x, \omega) \rightarrow \pi$
- Verify $(vk, x, \pi) \rightarrow b$

Designated Verifier (DV)

Syntax.

- Setup $(1^{\lambda}, \mathscr{R}) \to (crs, vk)$
- $Prove(crs, x, \omega) \rightarrow \pi$
- Verify $(vk, x, \pi) \rightarrow b$

Selective Soundness.

For every $x \notin \mathscr{L}$, every PPT adversary A, we have:

 $\mathbb{P}\left[\operatorname{Verify}(vk, x, \pi) = 1 \middle| \begin{array}{l} (crs, vk) \leftarrow \operatorname{Setup}(1^{\lambda}, \mathscr{R}) \\ \pi \leftarrow \operatorname{A}^{\operatorname{Verify}(vk, \cdot, \cdot)}(1^{\lambda}, crs, x) \end{array} \right] \leq \operatorname{negl}(\lambda)$

Designated Verifier (DV)

Syntax.

- Setup $(1^{\lambda}, \mathscr{R}) \to (crs, vk)$
- $Prove(crs, x, \omega) \rightarrow \pi$
- Verify $(vk, x, \pi) \rightarrow b$

Publicly Verifiable (PV)

 \mathbb{P}

Syntax.

- Setup $(1^{\lambda}, \mathscr{R}) \to crs$
- $Prove(crs, x, \omega) \rightarrow \pi$
- Verify $(crs, x, \pi) \rightarrow b$

Selective Soundness.

For every $x \notin \mathscr{L}$, every PPT adversary A, we have: $\mathbb{P}\left[\operatorname{Verify}(vk, x, \pi) = 1 \middle| \begin{array}{c} (crs, vk) \leftarrow \operatorname{Setup}(1^{\lambda}, \mathscr{R}) \\ \pi \leftarrow \operatorname{A}^{\operatorname{Verify}(vk, \cdot, \cdot)}(1^{\lambda}, crs, x) \end{array} \right] \leq \operatorname{negl}(\lambda)$

Selective Soundness.

For every
$$x \notin \mathscr{L}$$
, every PPT adversary A, we have:

$$Verify(vk, x, \pi) = 1 \begin{vmatrix} (crs, vk) \leftarrow Setup(1^{\lambda}, \mathscr{R}) \\ \pi \leftarrow A(1^{\lambda}, crs, x) \end{vmatrix} \leq negl$$

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{\text{ver}})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π) : 1. Return $\widetilde{C}(x, \pi)$

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{\text{ver}})$ 3. Return $crs = (crs^*, \widetilde{C})$

Prove(crs, x, ω):

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π): 1. Return $\widetilde{C}(x, \pi)$ $\operatorname{er}(x, t)$

 $C_{vk^*}^{ver}(x, \pi)$: 1. Return Verify* (vk^*, x, π)

Circuit $C_{vk^*}^{ver}$

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^\lambda, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{ver})$ 3. Return $crs = (crs^*, C)$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π) : 1. Return $C(x, \pi)$ $C_{\nu k^*}^{\mathsf{ver}}(x,\pi)$:

Circuit $C_{vk^*}^{ver}$

1. Return Verify*(vk^*, x, π)

Circuit C_{vk^*,x^*}^{ver} $C_{vk^*,x^*}^{\operatorname{ver}}(x,\pi)$: 1. If $x = x^*$, return 0.

2. Return Verify*(vk^*, x, π)

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^\lambda, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{\text{ver}})$ 3. Return $crs = (crs^*, C)$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π) : 1. Return $C(x, \pi)$ $C_{vk^*}^{ver}(x,\pi)$:

 $S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$

Circuit $C_{vk^*}^{ver}$

1. Return Verify*(vk^*, x, π)

Circuit C_{vk^*,x^*}^{ver} $C_{vk^*,x^*}^{\operatorname{ver}}(x,\pi)$: 1. If $x = x^*$, return 0. 2. Return Verify*(vk^*, x, π)

Sampler

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{\text{ver}})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π) : 1. Return $\widetilde{C}(x, \pi)$ $C_{vk^*}^{ver}(x, \pi)$: 1. Return Verify* (vk^*, x, π)

S

First Step:

Circuit $C_{vk^*}^{ver}$

Circuit C_{vk^*,x^*}^{ver} $C_{vk^*,x^*}^{ver}(x,\pi)$: 1. If $x = x^*$, return 0. 2. Return Verify* (vk^*, x, π)

Sampler

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

 $\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*}$ is an **odiO**-sampler.

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{\text{ver}})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(crs, x, π) : 1. Return $\widetilde{C}(x, \pi)$ $C_{vk^*}^{ver}(x, \pi)$: 1. Return Verify* (vk^*, x, π)

Circuit $C_{vk^*}^{ver}$

Circuit
$$C_{vk^*,x^*}^{\text{ver}}$$

 $C_{vk^*,x^*}^{\text{ver}}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify*(vk^*, x, π)

Sampler

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

First Step:

$$\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*} \text{ is an } \mathbf{odiO}\text{-sampler.}$$

Otherwise, the underlying (DV) Π^* is not sound.

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^\lambda, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{ver})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify (crs, x, π) : 1. Return $C(x, \pi)$ $C_{\nu k^*}^{\mathsf{ver}}(x,\pi)$:

Circuit $C_{vk^*}^{ver}$

1. Return Verify*(vk^*, x, π)

Circuit
$$C_{vk^*,x^*}^{ver}$$

 $C_{vk^*,x^*}^{ver}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

Sampler

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

First Step:

$$\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*} \text{ is an } \mathbf{odiO}\text{-sampler.}$$

Otherwise, the underlying (DV) Π^* is not sound. Here, we need oracles.

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^\lambda, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{ver})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify (crs, x, π) : 1. Return $C(x, \pi)$ $C_{\nu k^*}^{\mathsf{ver}}(x,\pi)$: 1. Return Verify*(vk^*, x, π)

S

 $\forall x^* \notin \mathscr{L}, S_{x^*}$ is an **odiO**-sampler. First Step: Replace $C_{vk^*}^{ver}$ with C_{vk^*,x^*}^{ver} .

Second Step:

Circuit $C_{vk^*}^{ver}$

Circuit
$$C_{vk^*,x^*}^{ver}$$

 $C_{vk^*,x^*}^{ver}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

Compiler

Setup $(1^{\lambda}, \mathscr{R})$: 1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^\lambda, \mathscr{R})$ 2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*}^{ver})$ 3. Return $crs = (crs^*, \widetilde{C})$

 $Prove(crs, x, \omega)$:

1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify (crs, x, π) : 1. Return $C(x, \pi)$

S

 $\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*} \text{ is an odiO-sampler.}$ First Step: Replace $C_{vk^*}^{ver}$ with C_{vk^*,x^*}^{ver} .

Second Step:

Circuit
$$C_{vk^*,x^*}^{ver}$$

 $C_{vk^*,x^*}^{ver}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

Compiler

Setup
$$(1^{\lambda}, \mathscr{R})$$
:
1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*, x^*})$

3. Return
$$crs = (crs^*, C)$$

 $Prove(crs, x, \omega)$: 1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify (crs, x, π) : 1. Return $C(x, \pi)$ $C_{vk^*}^{ver}(x,\pi)$. 1. Retu

S

 $\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*} \text{ is an odiO-sampler.}$ First Step: Replace $C_{vk^*}^{ver}$ with C_{vk^*,x^*}^{ver} .

Second Step:

Circuit
$$C_{vk^*,x^*}^{ver}$$

 $C_{vk^*,x^*}^{ver}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

Compiler

Setup
$$(1^{\lambda}, \mathscr{R})$$
:
1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*, x^*})$

3. Return
$$crs = (crs^*, C)$$

 $Prove(crs, x, \omega)$: 1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify(
$$crs, x, \pi$$
):
1. Return $\widetilde{C}(x, \pi)$

 $C_{vk^*}^{\text{ver}}(x,\pi)$ 1. Retu

S

 $\forall x^* \notin \mathscr{L}, \mathsf{S}_{x^*} \text{ is an odiO-sampler.}$ First Step: Replace $C_{vk^*}^{ver}$ with C_{vk^*,x^*}^{ver} .

Second Step:

Circuit
$$C_{vk^*,x^*}^{ver}$$

 $C_{vk^*,x^*}^{ver}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

Sampler

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

Otherwise, we can distinguish $Obf(1^{\lambda}, C_{vk^*}^{ver})$ and $Obf(1^{\lambda}, C_{vk^*}^{ver})$.

Compiler

Setup
$$(1^{\lambda}, \mathscr{R})$$
:
1. $(crs^*, vk^*) \leftarrow \text{Setup}^*(1^{\lambda}, \mathscr{R})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*})$
2. $\widetilde{C} \leftarrow \text{Obf}(1^{\lambda}, C_{vk^*, x^*})$

3. Return
$$crs = (crs^*, C)$$

 $Prove(crs, x, \omega)$: 1. Return $\pi \leftarrow \text{Prove}(crs^*, x, \omega)$

Verify (crs, x, π) : 1. Return $C(x, \pi)$ $C_{vk^*}^{ver}(x,\pi)$ 1. Retu

S

Circuit
$$C_{vk^*,x^*}^{\text{ver}}$$

 $C_{vk^*,x^*}^{\text{ver}}(x,\pi)$:
1. If $x = x^*$, return 0.
2. Return Verify* (vk^*, x, π)

$$S_{x^*}(1^{\lambda}) \to (C_0 = C_{vk^*}^{ver}, C_1 = C_{vk^*,x^*}^{ver}, \alpha = crs^*)$$

oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption Public key encryption

oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption Public key encryption

General Purpose odiO/oiO-obfuscators do not exist (unconditionally)

There exists an **odiO/oiO**-sampler that cannot be **odiO/oiO**-obfuscated.

oiO-based structure-preserving compilers

Key Indistinguishable symmetric key encryption Public key encryption

General Purpose odiO/oiO-obfuscators do not exist (unconditionally)

There exists an **odiO/oiO**-sampler that cannot be **odiO/oiO**-obfuscated.

\neg Key Ind. SKE \rightarrow PKE is impossible (unconditionally)

Does not exist an obfuscator Obf able to implement this compiler.

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems Publicly verifiable (PV) non-interactive argument systems

IV-based SKE

Message authentication codes Signatures

IV-based symmetric key encryption Public key encryption

Enc(k, m; iv) = (c, iv)

Applications of odiO

odiO-based structure-preserving compilers

Designated verifier (DV) non-interactive argument systems Publicly verifiable (PV) non-interactive argument systems

Thank You!