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∀x ∈ {0,1}n, C(x) = C̃ (x)(1) Correctness.

∃p( ⋅ ), ∀C, |𝖮𝖻𝖿(1λ, C) | ≤ p( |C | )(2) Polynomial Slowdown.
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Existing Notions

Virtual Black Box (VBB).

Indistinguishability Obfuscation (iO).

Differing-input Obfuscation (diO).
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VBB can be used to implement structure-preserving compilers.

Example:

 
   Return 
Ck(m) :

c ← 𝖤𝗇𝖼(k, m)
𝖮𝖻𝖿(1λ, Ck) → C̃ Set  

Obtain a PKE
pk = C̃

Some programs/circuits cannot 
be VBB-obfuscated 
(unconditionally). 

Some SKEs cannot be 
obfuscated into PKEs 

(unconditionally).

Impossibility Results [*]

[*] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.  
On the (im)possibility of obfuscating programs. 
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They are not powerful enough to implement  
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Intuition

We need to include a secret into the circuit.  

iO/diO are not enough to deal with secrets.



Can we obtain structure-preserving transformations 
from notions of obfuscation weaker than VBB? 
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(VBB) SIM-based def.  (oiO) IND-based def.⇒

Result

𝗈𝖽𝗂𝖮 ⇐ 𝗈𝗂𝖮 ⇐ 𝖵𝖡𝖡
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Key Ind. SKE  PKE is impossible (unconditionally)→
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Thank You!


