threshold ecdsa
learnings

Jack Doerner Yash Kondi Eysa Lee abhi shelat

Northeastern University

'll save you frustration by
skipping the part where |
explain what threshold signing
IS because Elizabeth + team
have covered It well.

But did they explain security notions?

N-1 security

Security-with-abort assuming
at least 1 honest party.

ldentifiable abort Is also
possible.

This talk

But did they explain security notions?

N-1security N/2 security

Security-with-abort assuming

at least 1 honest party. Assuming honest majority
makes some ISsues easler.

ldentifiable abort Is also
possible.

This talk

Threshold ECDSA Challenges

o (Distributed) KeyGeneration of ECDSA and EADSA is identical to Schnorr
e Signing is where we encounter troublesome non-linearity

SchnorrSign(sk, m) :

k<—Zq
R=k-G

e = H(R||m)
s=k—sk-e
o= (s,R)

output o

Threshold ECDSA Challenges

o (Distributed) KeyGeneration of ECDSA and EADSA is identical to Schnorr

e Signing is where we encounter troublesome non-linearity

SchnorrSign(sk, m) : i ECDSASign(sk, m) :

k<—Zq k<—Zq
R=k-G R=Fk-G
e = H(R||m) : e = H(m)
s=k—sk-e

c = (s, R)

output o

Threshold ECDSA Challenges

o (Distributed) KeyGeneration of ECDSA and EADSA is identical to Schnorr

e Signing is where we encounter troublesome non-linearity

SchnorrSign(sk, m) : i ECDSASign(sk, m) :

k<—Zq k<—Zq
R=k-G R=Fk-G

e = H(R|jm) : e = H(m)
s=k—sk-e : _etsker,
o = (5, R) T T

output o output 6 = (s, R)

Threshold ECDSA Challenges

o (Distributed) KeyGeneration of ECDSA and EADSA is identical to Schnorr

e Signing is where we encounter troublesome non-linearity

SchnorrSign(sk,m) : : ECDSASign(sk,m): EdDSASign(sk,m) :
k< Z, k< Z, :
R=k-G R=k-G ;
e = H(R||m) e = H(m) § e = H(R||m)
s=k—sk-e : e+sk-r. s=k—sk-e
o = (5, R) SzT o = (5, R)

output o output ¢ = (s, R) output o

Threshold ECDSA Challenges

o (Distributed) KeyGeneration of ECDSA and EADSA is identical to Schnorr

e Signing is where we encounter troublesome non-linearity

SchnorrSign(sk,m) : : ECDSASign(sk,m): EdDSASign(sk,m) :
k2, k2, k = F(sk,m)
R=k-G R=k-G R=Fk-G
e = H(R||m) e = H(m) § e = H(R||m)
s=k—sk-e : etsk -7, s=k—sk-e
o= (s,R) 0= I o = (5, R)

output o output ¢ = (s, R) output o

Threshold ECDSA Challenges

ECDSASi1gn(sk, m) :
k «— Zq
R = (r, ry) B
r / R=k-G Multiplication of
y' €= H(m) secret values

I S e+sk - r

M ¢ = X " x-coordinate of R (not secret)
,

output ¢ = (s, R) Division (Modular inverse)

Uses only ECDSA assumption, N - 1 Securlty

Employs an efficient check against malicious adversary.

2016 2020

N-1 security

2021

Relies on Paillier

2016

Our Key advantage

Additive Homorphic
Encryption (e.g. Paillier)
implement the mult +
Inv.

Our Key advantage

Additive Homorphic Implements any

Encryption (e.g. Paillier) MPC that computes
implement the mult + o)
Inv. g/

ldea: SPDZ Mac In the
exponent.

Our Key advan

ST19 implements any

Additive Homorphic MPC that computes

Encryption (e.g. Paillier)

Our family of
protocols exploit a

implement the mult + foex) computational self-
inv. g MAC created by a

| non-linear operation
Adds extra assumption, ldea: SPDZ Macin the in the exponent.
heavy computation, exponent.
seems to require tricky Faster, fewer rounds.
ZK proofs. Adds 2x & >13 rounds

due to extra
statistical MACs

DOCSS19 eval

LAN Continental WAN Worldwide WAN

n Sig(ms) KGen(ms) Sig(ms) KGen(ms) Sig(ms) KGen (ms)
Rep3 3 2.78 1.45 92722 2944 367.87 291.32
Shamir 3 3.02 1.39 78.75 30.02 1140.09 186.82
Mal. Rep3 3 3.45 1.7 82.14 39.97 1128.01 429.47
Mal. Shamir 3 4.43 1.89 174.95 37.35 2340.53 485.11
MASCOT 2 6.56 4.32 196.19 185.71 2688.92 2632.07
MASCOT- 2 3.01 4.41 54.38 181.12 729.08 2654.59
DKLS [20 2 3.08 43.73 15.33 109.80 234.37 1002.97
Unbound [13] 2 11.33 315.96 31.08 424.02 490.73 1010.98
Kzen [30] 2 310.71 153.87 1282.81 577.67 14441.83 (237.93

Table 1: Comparison with prior work. Numbers for our protocols are obtained
by taking the mean over the maximum execution time over many runs.

2-0ut-0f-2 Xue et al 2021

o Computation Communication
Signing Protocols Passes
offline online offline online
LNR18 [26] 28E + 157M (461ms) 14E + 121M (302ms) 32fn + 67k (12KB) 16fn + 51k (6.6KB) 8
GG18 [19] 42F + 40M (1237ms) 17M (3ms) 40¢n + 18k (15.5KB) 9k (288B) 9
CGGMP20 [6] 208E + 44M (2037ms) 2M (0.2ms) 118¢n + 20k (44KB) k (32B) 4
2ECDSA (Paillier) 14E + 11M (226ms) 2M (0.2ms) 16¢N + 11k (6.3KB) « (32B) 3
Lin17 [25] (Paillier-EC) 2E + 8M (34ms) 1E + 2M (8ms) 12x (192B) 20N (768B) 3
GG18 [19] (Paillier-EC) 18E + 40M (360ms) 17M (3ms) 16¢x5 + 18k (6.6KB) 9k (288B) 9
2ECDSA (Paillier-EC) 8E + 14M (141ms) 2M (0.2ms) 106y + 12k (4.1KB) k (32B) 3
CCLST19 [7] 4E + 8M (475ms) 1E + 2M (190ms) 6k (208B) 14k (505B) 3
CCLST20 [8’ 28E + 8M (3316ms) 17M (3ms) 140x (4.5KB) 9k (288B) 8
YCX21 [33] 28E + 8M (4550ms) 17M (3ms) 140k (4.5KB) 9% (288B) 8
2ECDSA (CL) 11E + 11M (1386ms) 2M (0.2ms) 53k (1.7KB) k (32B) 3
DKLS18 [15 13M (2.9ms) 2M (0.2ms) 16x° (169.8KB) k (32B) 2
DKLS19 [16° 13M (3.7ms) 2M (0.2ms) 20x* (180KB) k (32B) 7

2ECDSA (OT) 11M (2.6ms) 2M (0.2ms) 8x* (90.9KB) K (32B) 3

Important cases

Credit: Eysa for drawings

Important cases

Credit: Eysa for drawings

Important cases

Credit: Eysa for drawings

Improvements we ve discovered
while implementing and helping
other teams implement.

\\\\\\\\ Thanks to Ben Diamond, Arash Afshar, Matthias
Gelhs, Ben Riva, Lance Roy, Samuel Ranelluccl, Yehuda
Lindell, Lucas Meier, Web3Auth, Sepior \\\\\\\\ i random order

vouliiiuivilil 111ipuuvo 116 1U,1] MA T T

Bob

I
I
I
Private Input sk, € Zq . Private Input sk, € Zq
I
I

Algorithm ¢,k < Z, Algorithm kg < Z,

qb+1/k — N < 1/k

af—t —)tl

sk/k—> g
af—t

R H(R) D,+R'

<« sk /k,

—> 1’

(rx,'r)zR—k D | (, r)zR

sig, =m' - t,+r -t sigg = m' -0+r -t

0= (sig mod ¢, 7 mod gq)

abort if Verify(pk, o) # 1

D114+ 1114+ 0 (7 77\

2-out-of-2 from 2018

1 message from Bob to Alice
1 response from Alice to Bob

Functionality 2. Fs,mpledECDSA® DKL>18 . .
This functionality 1s parametrized in a manner identical I d 1 f t l t
to JFecpsa. Note that Alice may engage in the Offset e a unC lOna 1 y
Determination phase as many times as she wishes.
Setup (2-of-n): On receiving (init) from all parties:
1) Sample and store the joint secret key sk <— Zj.
2) Compute and store the joint public key pk := sk - G.

3) Send (public—key,pk) to all parties.
4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, idS8. m, B)
from Alice and (new, id™¢,m, A) from Bob, if (ready) exists
in memory, and if (message,id®®,-,-) does not exist in
memory, and 1f Alice and Bob both supply the same message
m and each indicate the other as their counterparty, then:

1) Sample kg < Zj,.

2) Store (message, ids’ig,m2 kg) in memory.

3) Send (nonce-shard, id*8, Dg := kg - G) to Alice.
Offset Determination: On receiving (nonce, idSig,i,Ri)
from Alice, if (message, id®8, m, kg) exists in memory, but
(nonce, id*8, j, -) for j =i does not exist in memory:

4) Sample k2 Lg.

5) Store (nonce,id*®, i, R;, k) in memory. |

6) Compute k’,fA — k2 /kg and send (offset,id™®, 1, ka)

to Alice.

Functionality 2. FsampledECDSA® DKLS18

This functionality 1s parametrized in a manner identical
to Fecpsa. Note that Alice may engage in the Offset
Determination phase as many times as she wishes.
Setup (2-of-n): On receiving (init) from all parties:
1) Sample and store the joint secret key sk <— Zj.
2) Compute and store the joint public key pk := sk - G.
3) Send (public—key,pk) to all parties.
4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, idS8. m, B)
from Alice and (new, id™¢,m, A) from Bob, if (ready) exists
in memory, and if (message,id®®,-,-) does not exist in
memory, and 1f Alice and Bob both supply the same message
m and each indicate the other as their counterparty, then:

1) Sample kg < Zj,.

2) Store (message, ids’ig,m2 kg) in memory.

3) Send (nonce-shard, id*8, Dg := kg - G) to Alice.
Offset Determination: On receiving (nonce, idSig,i,Ri)
from Alice, if (message, id®8, m, kg) exists in memory, but
(nonce, id*8, j, -) for j =i does not exist in memory:

4) Sample k2 Lg.

5) Store (nonce,id*®, i, R;, k) in memory. |

6) Compute k’,fA — k2 /kg and send (offset,id™®, 1, k,fA)

to Alice.

Ideal functionality

Our old 1deal model allowed a
benign form of bias in nonce
selection.

Secure In the Generic Group Model.

Alice can “grind” alternative R vals.

R=k D <A{D)y— D=kG

k, == HR')+ k!

Functionality 4.1. Frcpsa0p(G,n): Two-party ECDSA

Setup: On receiving (init,sid) from some party P; such that sid
Pill...||Pnllsid and i € [n] and sid is fresh, send (init-req,sid,?) to
On receiving (init,sid) from all parties,

©

...skipped...

Signing: On receiving (pre-sign,sid,sigid) from P, parse sigid =:
A’||B||sigid’, and ignore Pa’s message if A’ # A or B € [n] or sigid is not
fresh or (pk-delievered,sid, A) does not exist in memory; otherwise, send
(ready, sid, sigid) to Pg. When Pg subsequently sends (sign, sid, sigid, m),
if (pk-delievered,sid, B) exists in memory, then

12. Sample o < ECDSASign(G, sk, m) and parse (s,7*) := 0.
13. If Pa is corrupt, then send (leakage, sid, sigid,) directly to S.
14. Send (sig-req,sid,sigid, m) to Pa.

15. If Pa responds to the signature request with (proceed, sid, sigid, m) such
that the value of m is the same as the one previously supplied by Pg,
then send (signature,sid,sigid, o) to Pg and ignore all future messages
with the signature ID sigid.

16. If Pp responds to the signature request with (fail, sid, sigid), then send
(failure,sid,sigid) to Pg and ignore all future messages with the sig-
nature ID sigid.

Update: new 2-out-of-n
protocol removes bias,
but requires 1 more
message.

This message can be
pipelined (2 messages
total).

Common Inputs me {0,1}* pke G cReZ""

q

|
|
|
Private Inputs p(A)e Z | Private Inputs p(B)e Z
|
|
|

Bob

Ve {01} seZ" s’ s'e Z°
q q

Algorithm Pk, — Z, Algorithm kg — Z,

B

<@ D =k -G

R =k, D, 5
I
O+1/k, sk /k, 1/k, : 1/k, 1/ky sk/k,
I

—

/N \

Y N\

I
I
A RS
I
(r,r)=R:=k, D, I
(k,D,) —> <«— Com

A —> D abort ii

R =k, D=

Sig, = —I—’I“ “lin | G/k t1

 0:=(sig mod g, mod q)
~ abort if Verify(pk, 0) £ 1

Output oe (Z,Z)

Updated protocol

Common Inputs me {0,1}* pke G CR(_Z:HS
Bob

I
I
Private Inputs p(A)e Z, : Private Inputs p(B)e Z l l date d r OtO C 01
Ve {01} s'eZ] : S',s'e Z,
I
I
|

Algorithm Pk, — Z, Algorithm kg — Z,

t£ =)\A,B p(A) t|(3) —)\B,A p(B)

D) A
R =k D 8 D= kg G

This round can be pipelined with
the next instance.

I
O+1/k, sk /k, 1/k, : 1/k, 1/ky sk/k,
I

\ \ /
BB B

Y/

Protocol maintains OT
state, so this change Is
no additional burden.

 0:=(sig mod g, mod q)
~ abort if Verify(pk, 0) £ 1

Output oe (Z,Z)

2 Key refresh (proactive security)

Everyone has a key for pk. Everyone has a new key for pk.

2 Key refresh (proactive security)

Everyone has a key for pk. Everyone has a new key for pk.

2 Key refresh (proactive security)

Everyone has a key for pk. Everyone has a new key for pk.

- T o
@ 2-out-of-n @

G\
7z &

Key refresh is easy mwos

@ 2-out-of-n @

@

Beaver trick to refresh

pairwise OTE with XOR.

PRG Seed.

Ns

Re-run DKG.
Re-run OTE.
Works well because our
key setup Is fast.

TLDR: Key setup times are CRITICAL

Paillier and other schemes require a heavy
key setup which makes refresh heavy.

Reason: (CAN'T Rerandomize Paillier N)

3 LAN/WAN k-out-of-k 2019

Milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
3/5 9 233 3238
16/1 10 20.3 131
16/16 10 3045 1676
40/1 12 60.3 D39
40/35 12 D92 743
128/1 13 193.2 2300
128/16 13 4118 3424

WAN slowdown due to round complexity.

3 LAN/WAN k-out-of-k 2019

Milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9
3/5 9 233 3238
16/1 10 20.3 131
16/16 10 3045 1676
40/1 12 60.3 D39
40/35 12 D92 743
128/1 13 193.2 2300
128/16 13 4118 3424

|Qg(t)+6 WAN slowdown due to round complexity.

—
R, —> Toparty P, Updated

—

i From party P
sk, = i protocol
R 70 1Pk Y — 74 R; O
s llj’) N D 5 Rounds
(T} 71%.6) — No ZK proofs
@ e 8) = & No hidden fees

Mostly Symmetric
operations for signing.
(Check egns use 13 ec

ops)

OT Extensions

Roy shows a break in KOS for special cases of [«

The break does not apply to k = 128, but it identifies a gap in the proof.
Our implementation 1s moving to SoftSpoken OT.

Concurrency Issue In implementation.
If one Instance aborts, all should abort. Fixed. [rival

Gaps between Theory and Practice

Random Oracle Model
Interparty Communication

LUX] Initializing the session, argument checking

Use of Fiat-Shamir

If the protocol needs a programmable
Random Oracle, every (sub)protocol
Instance needs a different RO.

One way Is to hash a unique prefix.
Several recent bug bounties on this issue.

Our "17 academic implementation spent
574 lines synchronizing fresh RO tags.

Encouraged me to learn TLA+ spec.
Found a simpler way <100l.

the room is
extractability.

A protocol that uses ZK proofs in a
concurrent setting needs to extract
witnesses without rewinding. .

A protocol that uses ZK proofs in a
concurrent setting needs to extract
witnesses without rewinding. .

Flat-Shamir requires rewinding to extract a witness.

The best approach 1s straight-line extractability.
Pass03, Fischlin05, Kondi-shelat 21

Requires 10 copies of proof, extra prover time, verifier time.

Concurrent setting means web3.

Or web?2.
Or Internet.

But not at home...

Common Inputs me {0,1}* pke G cReZ""

q

Private Inputs p(A)e Z,

Bob

I
|
|
. Private Inputs p(B)e Z
Ve {01} ez | s’ s'e Z°
q I q
|
|
|

Algorithm Pk, — Z, Algorithm kg — Z,

t£ =)\A,B p(A) t|(3) —)\B,A p(B)

e I 2-out-of-n protocol

<@ D =k -G

B B

g uses 1 Schnorr proof.

Triple Mul

2b
tA

/N \

2=t

Y N\

ot

(r,r)=R:=k, D,

(k‘ D) =l (r,B,Com) %D «<— Com

v ZK-COM ,
i e —» D abort if

':= H(m) m' := H(m)
sig, ==m' -t +r -t : 0' =0 /k,-t]

3
I

 0:=(sig mod g, mod q)
~ abort if Verify(pk, 0) £ 1

Output oe (Z,Z)

k-out-of-n does not
use ZK proofs. Avoids
this overhead.

Paillier needs proofs to sign

o

are detected, P; sets R = %" and stores (R, k;, x;). For malicious security, the aforementioned process is
augmented with the following ZK-proofs:

(a) The plaintext of K; lies in range Z..

(b) The ciphertext D;; was obtained as an affine-like opperation on K, where the multiplicative coefficient
is equal to the exponent of I';, and it lies in range Z., and the additive coefficient is equal to hidden
value of Fj ;, and lies in range J..

¢) The ciphertext D, was obtained as an affine operation on K; where the multiplicative coefficient is
Js J

equal to the exponent of X;, and it lies in range Z., and the additive coefficient is equal to hidden value
of F;;, and it lies in range J..

(d) The exponent of I'; is equal to the plaintext-value of G;. CGGMP

How to avoid straight-line extraction penalty?

D -\

Protocol 1s run on devices owned by the same entity.
Enforces each device serializes its executions.

Does not work if one entity is a server (common Bob for many clients).

6
The real
ally really difficult issues

. @ 0 a %

‘ ===\

The environment Z

Y/ 7
/ 0
' ~ €. Y
I;.»,’-:‘-‘*".' * i "1 ’
SIS IA
R £ - ‘va".‘ﬂ
"/ SR/
® o ¢h

o£ ® ’
k‘ ou t' Of‘ N

e . ft’

Starting assumptions are hard:
common knowledge of participants, msg, session 1d,
authenticated channels.

./target/release/main -m 13 -1 500 --parties nodekey:d9e492c62214380c7206f15f8c2efd55¢c9¢c606c44d30bb6b4s4td516926b7477eqw0 .
s-centrall-a.c.neuwork.internal:6000,nodekey:d16878d51772537¢c363b38d4870a8e964561593ae8d6a32d94949e41e2d2c45aawl.us-easts
a.c.neuwork.internal:6001,nodekey:7c70d391bf3ed1c655f4f4b910a191e8445211¢c95e1a0385dfacl1052755bd324qw2.us-westl-a.c.neuwork
.1nternal:6002,nodekey:744dcf572fb5589829a1e73e882888264e722al1fdb5d4el7c5e29ccc8f9a6d79aw3. europe-west2-c.c.neuwork.inter
al:6003,nodekey:c41976d17843eb582ed9becl167cl1262eabffec66de2ea9e82807ff91bd30c166aws.us-eastl-b.c.neuwork.1internal:6004,nod
ekey:7a5abd6d4bbcde5158618f63d697e5ch0d78ce3be51afbf111362a150c101e47qw5.us-west3-a.c.neuwork.internal:6005,nodekey:7c0740
65f485b44926cbaf2c48a237174906cce31f7b1cd3169d0a39fd44564fawé.us-centrall-b.c.neuwork.internal:6006,nodekey:00127a6f43093

2b564b05342e225777760477dc6c30cadb60780e1b789f0542qw7 .us-east4-b.c.neuwork.1nternal:6007,nodekey:b8elc4a5b8daa83clce6dl57
5510e4598f6547f75¢c136b9016b292e4967f731aw8.europe-west2-b.c.neuwork.internal:6008,nodekey:e590ed197aa4032d0fea554c7¢c71c95¢
bc4adf2dd3c2d23d8fa8cf44ac66d357aqw9.us-westl-b.c.neuwork.internal:6009,nodekey:0474a1f2f55f426d3elaf7f62633617afbfe84ed78
a6add5d205b1940ec3315qwl10.europe-westl-b.c.neuwork.internal:6010,nodekey:a05a402e2beaddd8762eeb4241c57e585c4e390d73¢5828d
aaee9009ab8cl2aawll.us-centrall-c.c.neuwork.internal:6011,nodekey: f64d499638737b2e8529377cd18927cd2f7bd1ac271315782742b73e
748e4f07aqwl2.us-east4-c.c.neuwork.internal:6012,nodekey:20d6f90cbd462e700f93ecaa58ch6d552571b0a79aeb4bd4c5del0c22fdbeest7a)
13.europe-westl-c.c.neuwork.internal:6013,2023/03/29 04:09:40 pk: nodekey:a8229b136331cdc27675213ac00356949652738101659cfz

Setup needs many scans

All devices are local, same owner, k-out-of-k at setup.

Growing participant set
C}
0

K-out-of-k already Want to setup k-out-
setup. of-(k+1).

Changing threshold

Handled using

[s
B a
B

K-out-of-k already Want to setup
setup. (k+1)-out-of-(k+1).

Parties are not local

/

87.1‘ ms

06.5 ms
348 ms

common knowledge of participants, and session id,
authenticated channels.

23¢

04:41 ol“ ? -

< Threshold Key Signing
Key 1 2-out-of-2 d9e492c...
744dcf5...
Key 2 2-out-of-2 d9e492c...
7a5abdeb...

New Key Request

Device
a05a402e2beaddd8762eeb4
Is requesting to create a
new 2-out-of-2 threshold
key with you.

Cancel OK

The identity of this device is
d9e492c62214380c7206f15f8c2efd
c9¢c606c44d30b6b444fd5f6926b74
Do not interact with device IDs

that you do not know.

- O

Recovery

| lost my phone
(key share)

...before | was able to
setup a 2-out-of-3

s threshold a 10x better experience for
{user, organization}?

