
threshold ecdsa
learnings

Jack Doerner Yash Kondi Eysa Lee abhi shelat

Northeastern University

I’ll save you frustration by
skipping the part where I
explain what threshold signing
is because Elizabeth + team
have covered it well.

But did they explain security notions?

N-1 security
Security-with-abort assuming
at least 1 honest party.

Identifiable abort is also
possible.

This talk

But did they explain security notions?

N-1 security
Security-with-abort assuming
at least 1 honest party.

Identifiable abort is also
possible.

N/2 security
Assuming honest majority
makes some issues easier.

This talk

reshold ECDSA Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of ECDSA and EdDSA is identical to Schnorr

• Signing is where we encounter troublesome non-linearity

reshold ECDSA Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of ECDSA and EdDSA is identical to Schnorr

• Signing is where we encounter troublesome non-linearity

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

reshold ECDSA Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of ECDSA and EdDSA is identical to Schnorr

• Signing is where we encounter troublesome non-linearity

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

reshold ECDSA Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of ECDSA and EdDSA is identical to Schnorr

• Signing is where we encounter troublesome non-linearity

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

reshold ECDSA Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of ECDSA and EdDSA is identical to Schnorr

• Signing is where we encounter troublesome non-linearity

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

reshold ECDSA Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

[D
KLs

18
]

[D
KLs

19
]

2016 2020

[G
GN16

]

[Li
n1

7]

[BGG17
]

[LN
R18

]

[G
G18

]

[C
CLS

T19
]

[D
OKSS19

]

Uses only ECDSA assumption,
Employs an efficient check against malicious adversary.

N-1 security

[G
GN16

]

[Li
n1

7]

[BGG17
]

[LN
R18

]

[G
G18

]

[C
CLS

T19
]

[D
OKSS19

]

[C
CLS

T20
]

[C
MP20

]

[G
KSS20

]

[ST19
]

[G
G20

]

2016 2021Relies on Paillier
Relies on Class Groups
Relies on more generic MPC.

[D
KLs

18
]

[D
KLs

19
]

N-1 security

[XAXYC21
]

Our Key advantage
Additive Homorphic
Encryption (e.g. Paillier)
implement the mult +
inv.

Adds extra assumption,
heavy computation,
seems to require tricky
ZK proofs.

Our Key advantage
ST19 implements any
MPC that computes

Idea: SPDZ Mac in the
exponent.

Adds 2x & >13 rounds
due to extra
statistical MACs

gf(x,x−1)

Additive Homorphic
Encryption (e.g. Paillier)
implement the mult +
inv.

Adds extra assumption,
heavy computation,
seems to require tricky
ZK proofs.

Our family of
protocols exploit a
computational self-
MAC created by a
non-linear operation
in the exponent.

Faster, fewer rounds.

Our Key advantage
ST19 implements any
MPC that computes

Idea: SPDZ Mac in the
exponent.

Adds 2x & >13 rounds
due to extra
statistical MACs

gf(x,x−1)

Additive Homorphic
Encryption (e.g. Paillier)
implement the mult +
inv.

Adds extra assumption,
heavy computation,
seems to require tricky
ZK proofs.

DOCSS19 eval
LAN Continental WAN Worldwide WAN

n Sig(ms) KGen(ms) Sig(ms) KGen(ms) Sig(ms) KGen (ms)

Rep3 3 2.78 1.45 27.22 29.44 367.87 291.32
Shamir 3 3.02 1.39 78.75 35.52 1140.09 486.82
Mal. Rep3 3 3.45 1.57 82.14 39.97 1128.01 429.47
Mal. Shamir 3 4.43 1.89 174.95 37.35 2340.53 485.11
MASCOT 2 6.56 4.32 196.19 185.71 2688.92 2632.07
MASCOT– 2 3.61 4.41 54.38 181.12 729.08 2654.59

DKLS [20] 2 3.58 43.73 15.33 109.80 234.37 1002.97
Unbound [43] 2 11.33 315.96 31.08 424.02 490.73 1010.98
Kzen [36] 2 310.71 153.87 1282.81 577.67 14441.83 7237.93

Table 1: Comparison with prior work. Numbers for our protocols are obtained
by taking the mean over the maximum execution time over many runs.

6.4 Amortizing Signing.

Finally, we analyze the cost of signing when amortization is applied, something
that no prior work has considered.9 Table 3 shows how many signing tuples
each protocol can generate per second. The signing times reported in this table
correspond to computing a signature when amortization is taken into account.
A signing tuple corresponds to the output of the user dependent preprocessing

phase in Figure 4. We note that, for almost all protocols, amortized signing
corresponds essentially to a single round of communication.

6.5 Overhead for Operators.

The storage overhead can be derived from the sizes of a share for a given protocol.
For Mal. Rep3, MASCOT and Rep3 each share consists of two Zp elements, while
for the rest a share is a single element. Thus, for the former three the overhead for
storing the signing keys is doubled. A signing tuple consists of two Zp shares and
one G share. For example, Rep3 needs to store roughly 2·4·32 bytes per signature,
assuming a 256-bit prime. Communication per party is between 177 and 354
bytes, depending on the protocol (this number was derived at experimentally).

7 Related Works

DNSSEC deployment and measurement. DNSSEC deployment heavily re-
lies on DNS operators and registrars. Prior works have found issues such as reuse
of signing keys by DNS operators for multiple domains 10 [13] and sharing of

9 Although it might be possible to split some of the protocols in previous work into a
preprocessing and signing phase, such a split has not been implemented and, hence,
we cannot compare with it.

10
https://www.netnod.se/sites/default/files/2016-12/

NETNOD2015 DNS Martin Levy CloudFlare-2.pdf (Slide 28)

Xue et al 2021

Table 2: Comparison of signing with two-party protocols and two-party case of threshold ECDSA from Paillier, OT and CL
respectively. These concrete numbers are based on computational security parameter _ = 128 and statistical security parameter
80. For those Paillier-based schemes, E represents a Paillier exponentiation over Z# 2 (we approximately count 3 operations of
mod # as one operation of mod # 2. Some of E are single “short" exponentiation), while for CL-based schemes E means an
exponentiation over CL group.M refers to elliptic curve point multiplication which is almost free compared with E. In the
communication column, EC points, CL group elements, and ring elements of Paillier are encoded by ^, 7^ (only for ^ = 256), and
2✓# bits respectively. Estimating in parentheses includes the constant overhead with the standard security recommendation, i.e.
^ = 256 and ✓# = 3072. “Paillier-EC" means that Paillier-EC assumption is applied to eliminate a zero-knowledge proof.

Signing Protocols
Computation Communication

Passes
o�ine online o�ine online

LNR18 [26] 28E + 157M (461ms) 14E + 121M (302ms) 32✓# + 67^ (12KB) 16✓# + 51^ (6.6KB) 8
GG18 [19] 42E + 40M (1237ms) 17M (3ms) 40✓# + 18^ (15.5KB) 9^ (288B) 9
CGGMP20 [6] 208E + 44M (2037ms) 2M (0.2ms) 118✓# + 20^ (44KB) ^ (32B) 4
2ECDSA (Paillier) 14E + 11M (226ms) 2M (0.2ms) 16✓# + 11^ (6.3KB) ^ (32B) 3

Lin17 [25] (Paillier-EC) 2E + 8M (34ms) 1E + 2M (8ms) 12^ (192B) 2✓# (768B) 3
GG18 [19] (Paillier-EC) 18E + 40M (360ms) 17M (3ms) 16✓# + 18^ (6.6KB) 9^ (288B) 9
2ECDSA (Paillier-EC) 8E + 14M (141ms) 2M (0.2ms) 10✓# + 12^ (4.1KB) ^ (32B) 3

CCLST19 [7] 4E + 8M (475ms) 1E + 2M (190ms) 6^ (208B) 14^ (505B) 3
CCLST20 [8] 28E + 8M (3316ms) 17M (3ms) 140^ (4.5KB) 9^ (288B) 8
YCX21 [33] 28E + 8M (4550ms) 17M (3ms) 140^ (4.5KB) 9^ (288B) 8
2ECDSA (CL) 11E + 11M (1386ms) 2M (0.2ms) 53^ (1.7KB) ^ (32B) 3

DKLS18 [15] 13M (2.9ms) 2M (0.2ms) 16^2 (169.8KB) ^ (32B) 2
DKLS19 [16] 13M (3.7ms) 2M (0.2ms) 20^2 (180KB) ^ (32B) 7
2ECDSA (OT) 11M (2.6ms) 2M (0.2ms) 8^2 (90.9KB) ^ (32B) 3

2-out-of-= threshold scheme, albeit, in a rather ine�cient way. To
jointly compute B = � (<)/:1:2 + A (G1 +G2)/:1:2, they adopt three
MtA to export the additive shares of 1/:1 · 1/:2, G1/:1 · 1/:2, and
1/:1 · G2/:2 respectively. Thus, their two-party case of 2-out-of-=
scheme is worse than their direct two-party scheme where only
twoMtA are required.
The �rst attempt: Re-sharing of the secret. We resolve this
problem with a re-sharing of secret G using a share of nonce :2.
Concretely, in the o�ine phase the secret G = G1 + G2 is re-shared
to G 01, G

0
2 using one MtA such that

G1 + G2 = G 01:2 + G 02 .

In the online phase, %2 computes B2 = :�12 (� (<) + AG 02), and %1
could derive the signature component B from B2, :1 and G 01 since

B = :�11 (B2 + AG
0
1)

= :�11 :�12
⇥
� (<) + A (G 02 + :2G

0
1)
⇤

= :�1 (� (<) + AG) .

The o�ine phase re-shares the secret G = G1 + G2 into G =
G 01:2 + G 02, with a single MtA. Speci�cally, %1 chooses a random
G 01 Z@ , and then %1 and %2 invoke MtA with input G 01 and :2
respectively, and receive shares C� and C⌫ such that C� + C⌫ = G 01:2.
Then %1 masks G1 with C� and sends 22 = C� � G1 to %2. %2 could

extract its new share G 02 from 22, G2, and C⌫ , since

G 02 = G1 + G2 � G
0
1:2 = (C� � 22) + G2 � G

0
1:2 = �C⌫ � 22 + G2 .

The resulting scheme is online-friendly and requires a single MtA
in the o�ine phase. Unfortunately, this solution is insecure and a
malicious adversary may cheat.
Attack on the �rst attempt. We show that a malicious %2 can
obtain G1 in the previous scheme. Observe that

G1 = C� � 22 = G 01:2 � C⌫ � 22,

where :2, C⌫, 22 are known to %2. The malicious %2 can set :2 = 0
as the input of MtA and learn %1’s secret G1 = �C⌫ � 22 .
Our solution: Linear sharing of the nonce. A simple solution
to rule out the attack of :2 = 0 is to add a zero-knowledge proof of
:2 < 0 for %2, but it would be quite expensive. Instead, we apply a re-
randomization method to solve this problem. Now, the re-sharing
of the secret is changed to G = G 01 (:2 + A1) + G 02, where A1 is chosen
by %1 and could be given to %2. To achieve that, %1 now masks
G1 with C� and a random A1 by setting 22 = C� + A1G 01 � G1. Now
G1 = C� + A1G 01 �22 = G 01 (:2 + A1) � C⌫ �22 . If A1 is chosen by %1 after
:2 is chosen by the (malicious) %2, %2 learns nothing about G1 since
:2 + A1 = 0 with probability at most 1/@.

In order to support this change in the re-sharing of the secret, we
need to view %2’s share of the nonce as (:2+A1). Interestingly, while
we require A1 to be chosen by %1 (in order to withstand the above

3

2-out-of-2

Important cases
2-out-of-2

k-out-of-k

Credit: Eysa for drawings

Important cases
2-out-of-2

k-out-of-k
One Idea

sk =
k

∑
j=0

skjℓj(0)

Lagrange
Credit: Eysa for drawings

Important cases
2-out-of-2

k-out-of-k

k-out-of-n
2-out-of-n

One Idea

sk =
k

∑
j=0

skjℓj(0)

Lagrange
Credit: Eysa for drawings

Improvements we’ve discovered
while implementing and helping
other teams implement.

\\\\\\\\ Thanks to Ben Diamond, Arash Afshar, Matthias
Geihs, Ben Riva, Lance Roy, Samuel Ranellucci, Yehuda
Lindell, Lucas Meier, Web3Auth, Sepior \\\\\\\\ in random order

1

2-out-of-2 from 2018

abort if Verify(pk, σ) /= 1

Mul
α

t αβ − t

βφ + 1/k
A

t
A
1

1/k
B

t
B
1

sk
A
/k
A

t
A
2

sk
B
/k
B

t
B
2

Mul
α

t αβ − t

β

k
B
 ← Z

q

sk
A
 ∈ Z

q

Alice Bob

 Private Input Private Input

 Algorithm Algorithm

 Common Inputs

sk
B
 ∈ Z

q

pk ∈ Gm ∈ {0,1}*

m' := H(m) m' := H(m)

sig := sig
B
+ηsig −H(Γ 2)

σ := (sig mod q, r
x
 mod q)

 Output σ ∈ (Z
q
,Z

q
)

sig
A
 := m' · t

A
1

 + r
x
 · t
A
2

Γ 1 := t
B
1 · R

φ, k'
A
 ← Z

q

D
B
 := k

B
 · GD

BR' := k'
A

 · D
B

k
A
 := H(R') + k'

A

R' R := H(R') · D
B

 + R'

(r
x
, r

y
) = R(r

x
, r

y
) = R := k

A
 · D

B

Γ 1 := G + φ · k
A

 · G − t
A
1 · R

sig
B
 := m' · θ + r

x
 · t
B
2

ηsig := H(Γ 2) + sig
A

ηsig

ηφ := H(Γ 1) + φ ηφ φ := ηφ − H(Γ 1)

Γ 2 := t
B
2 · G − θ · pkΓ 2 := t

A
1 · pk − t

A
2 · G

θ := t
B
1
 − φ/k

B

(k
A
,D
B
) (R,D

B
)

ZK-DL
(x,B)

xB=X

(X,B)

? abort if 0

1 message from Bob to Alice
1 response from Alice to Bob

1

1

Ideal functionality

allowing the parties to abort between them. In the first two
parts, Alice and Bob initiate a new signature for a message m,
and a random instance key k is chosen by the functionality,
along with R = k · G, which is returned to Alice. Alice is
permitted to request a new sampling of R from the functionality
arbitrarily many times (with a negligible chance of receiving a
favorable value), and to choose from the sampled set one value
under which the signature will be performed. If neither party
aborts, then in the third part the functionality will return a
signature under the chosen R. This accounts for Alice’s ability
to manipulate the Diffie-Hellman exchange, and yet it ensures
that she does not know the discrete logarithm of the value that
is eventually chosen, and that the value is uniform over G.

In Appendix C we prove in the Generic Group Model [47]
that FSampledECDSA is no less secure than ECDSA itself. We
also believe that a four-round variant of our protocol can realize
the FECDSA functionality directly.

Functionality 2. FSampledECDSA:
This functionality is parametrized in a manner identical
to FECDSA. Note that Alice may engage in the Offset
Determination phase as many times as she wishes.
Setup (2-of-n): On receiving (init) from all parties:

1) Sample and store the joint secret key sk Zq .
2) Compute and store the joint public key pk ..= sk ·G.
3) Send (public-key, pk) to all parties.
4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, idsig,m,B)
from Alice and (new, idsig,m,A) from Bob, if (ready) exists
in memory, and if (message, idsig, ·, ·) does not exist in
memory, and if Alice and Bob both supply the same message
m and each indicate the other as their counterparty, then:

1) Sample kB Zq .
2) Store (message, idsig,m, kB) in memory.
3) Send (nonce-shard, idsig, DB

..= kB ·G) to Alice.
Offset Determination: On receiving (nonce, idsig, i, Ri)
from Alice, if (message, idsig,m, kB) exists in memory, but
(nonce, idsig, j, ·) for j = i does not exist in memory:

4) Sample k�i Zq .
5) Store (nonce, idsig, i, Ri, k�i) in memory.
6) Compute k�i,A = k�i /kB and send (offset, idsig, i, k�i,A)

to Alice.
Signing: On receiving (sign, idsig, i, kA) from Alice and
(sign, idsig) from Bob, if (message, idsig,m, kB) exists in
memory and (nonce, idsig, j, Ri, k�i) for j = i exists in
memory, but (complete, idsig) does not exist in memory:

7) Abort if kA · kB ·G 6= Ri.
8) Set k ..= kA · kB + k�i and store (rx, ry) = R ..= k ·G.
9) Compute

sig ..=
H(m) + sk · rx

k

10) Collect the signature, � ..= (sig mod q, rx mod q).
11) Send (signature, idsig, R, k�i ,�) to Bob.
12) Store (complete, idsig) in memory.

IV. A BASIC 2-OF-2 SCHEME

We describe a simplified 2-of-2 version of our scheme
initially, abstracting away the multiplication protocols for the
sake of clarity. In Section V we extend our scheme to support
2-of-n threshold signing. The fundamental structure of our 2-
of-2 scheme is similar to that of Lindell [2] in that the signing
protocol ingests multiplicative shares of both the private key
and the instance key from each party.

A. Signing

Alice and Bob begin with m, the message to be signed, and
multiplicative shares of a secret key (skA and skB respectively),
as well as a public key pk that is consistent with those shares.
The protocol is divided into four logical steps:

1) Multiplication: The parties transform multiplicative
shares of the instance key into additive shares. A second
multiplication converts multiplicative shares of the secret
key divided by the instance key into additive shares. Due
to the presence of the consistency check and verification
steps (below), the multiplication protocols employed are
not required to enforce correctness or consistency of
inputs; thus we model multiplication via FMul (given in
Section VI), which allows for well-specified cheating. To
instantiate this functionality, we use the custom OT-based
multiplication protocol that we describe in Section VI-B.

2) Instance Key Exchange: The parties calculate R = k ·G
using a modified Diffie-Hellman exchange.

3) Consistency Check: The parties verify that the first
multiplication uses inputs consistent with the Instance
Key Exchange. This is achieved by adding a random pad
� to Alice’s input, and then combining the pad with the
multiplication output and the known value R in such
a way that Bob can retrieve the pad only if he acted
honestly. A second check ensures that the multiplications
are consistent with each other and with the public key, by
combining the multiplication outputs with the public key
in the exponent.

4) Signature and Verification: The parties reconstruct the
signature, which is given to Bob. If the signature verifies
in the usual way, then Bob outputs it.

The Instance Key Exchange component implements the
second and third phases of the FSampledECDSA functionality,
and the Multiplication, Consistency Check, and Verification
components implement the fourth phase. Although we make
a logical distinction between these four components, in the
actual protocol they are intertwined. In particular, we reorder
the messages such that all messages from Bob to Alice come
first, followed by all messages from Alice to Bob, which results
in a two-message protocol. Additionally, rather than perform
the consistency check directly, we use its associated value as
a key to encrypt all subsequent communications, so that the
protocol can only be completed if the consistency check passes.

A proof of knowledge is necessary in order to ensure that
Alice’s inputs are extractable, and thus the protocol makes use
of a zero-knowledge proof-of-knowledge-of-discrete-logarithm

5

DKLS18

Ideal functionality

allowing the parties to abort between them. In the first two
parts, Alice and Bob initiate a new signature for a message m,
and a random instance key k is chosen by the functionality,
along with R = k · G, which is returned to Alice. Alice is
permitted to request a new sampling of R from the functionality
arbitrarily many times (with a negligible chance of receiving a
favorable value), and to choose from the sampled set one value
under which the signature will be performed. If neither party
aborts, then in the third part the functionality will return a
signature under the chosen R. This accounts for Alice’s ability
to manipulate the Diffie-Hellman exchange, and yet it ensures
that she does not know the discrete logarithm of the value that
is eventually chosen, and that the value is uniform over G.

In Appendix C we prove in the Generic Group Model [47]
that FSampledECDSA is no less secure than ECDSA itself. We
also believe that a four-round variant of our protocol can realize
the FECDSA functionality directly.

Functionality 2. FSampledECDSA:
This functionality is parametrized in a manner identical
to FECDSA. Note that Alice may engage in the Offset
Determination phase as many times as she wishes.
Setup (2-of-n): On receiving (init) from all parties:

1) Sample and store the joint secret key sk Zq .
2) Compute and store the joint public key pk ..= sk ·G.
3) Send (public-key, pk) to all parties.
4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, idsig,m,B)
from Alice and (new, idsig,m,A) from Bob, if (ready) exists
in memory, and if (message, idsig, ·, ·) does not exist in
memory, and if Alice and Bob both supply the same message
m and each indicate the other as their counterparty, then:

1) Sample kB Zq .
2) Store (message, idsig,m, kB) in memory.
3) Send (nonce-shard, idsig, DB

..= kB ·G) to Alice.
Offset Determination: On receiving (nonce, idsig, i, Ri)
from Alice, if (message, idsig,m, kB) exists in memory, but
(nonce, idsig, j, ·) for j = i does not exist in memory:

4) Sample k�i Zq .
5) Store (nonce, idsig, i, Ri, k�i) in memory.
6) Compute k�i,A = k�i /kB and send (offset, idsig, i, k�i,A)

to Alice.
Signing: On receiving (sign, idsig, i, kA) from Alice and
(sign, idsig) from Bob, if (message, idsig,m, kB) exists in
memory and (nonce, idsig, j, Ri, k�i) for j = i exists in
memory, but (complete, idsig) does not exist in memory:

7) Abort if kA · kB ·G 6= Ri.
8) Set k ..= kA · kB + k�i and store (rx, ry) = R ..= k ·G.
9) Compute

sig ..=
H(m) + sk · rx

k

10) Collect the signature, � ..= (sig mod q, rx mod q).
11) Send (signature, idsig, R, k�i ,�) to Bob.
12) Store (complete, idsig) in memory.

IV. A BASIC 2-OF-2 SCHEME

We describe a simplified 2-of-2 version of our scheme
initially, abstracting away the multiplication protocols for the
sake of clarity. In Section V we extend our scheme to support
2-of-n threshold signing. The fundamental structure of our 2-
of-2 scheme is similar to that of Lindell [2] in that the signing
protocol ingests multiplicative shares of both the private key
and the instance key from each party.

A. Signing

Alice and Bob begin with m, the message to be signed, and
multiplicative shares of a secret key (skA and skB respectively),
as well as a public key pk that is consistent with those shares.
The protocol is divided into four logical steps:

1) Multiplication: The parties transform multiplicative
shares of the instance key into additive shares. A second
multiplication converts multiplicative shares of the secret
key divided by the instance key into additive shares. Due
to the presence of the consistency check and verification
steps (below), the multiplication protocols employed are
not required to enforce correctness or consistency of
inputs; thus we model multiplication via FMul (given in
Section VI), which allows for well-specified cheating. To
instantiate this functionality, we use the custom OT-based
multiplication protocol that we describe in Section VI-B.

2) Instance Key Exchange: The parties calculate R = k ·G
using a modified Diffie-Hellman exchange.

3) Consistency Check: The parties verify that the first
multiplication uses inputs consistent with the Instance
Key Exchange. This is achieved by adding a random pad
� to Alice’s input, and then combining the pad with the
multiplication output and the known value R in such
a way that Bob can retrieve the pad only if he acted
honestly. A second check ensures that the multiplications
are consistent with each other and with the public key, by
combining the multiplication outputs with the public key
in the exponent.

4) Signature and Verification: The parties reconstruct the
signature, which is given to Bob. If the signature verifies
in the usual way, then Bob outputs it.

The Instance Key Exchange component implements the
second and third phases of the FSampledECDSA functionality,
and the Multiplication, Consistency Check, and Verification
components implement the fourth phase. Although we make
a logical distinction between these four components, in the
actual protocol they are intertwined. In particular, we reorder
the messages such that all messages from Bob to Alice come
first, followed by all messages from Alice to Bob, which results
in a two-message protocol. Additionally, rather than perform
the consistency check directly, we use its associated value as
a key to encrypt all subsequent communications, so that the
protocol can only be completed if the consistency check passes.

A proof of knowledge is necessary in order to ensure that
Alice’s inputs are extractable, and thus the protocol makes use
of a zero-knowledge proof-of-knowledge-of-discrete-logarithm

5

Our old ideal model allowed a
benign form of bias in nonce
selection.

Secure in the Generic Group Model.

Alice can “grind” alternative R vals.

abort if Verify(pk, σ) /= 1

Mul
α

t αβ − t

βφ + 1/k
A

t
A
1

1/k
B

t
B
1

sk
A
/k
A

t
A
2

sk
B
/k
B

t
B
2

Mul
α

t αβ − t

β

k
B
 ← Z

q

sk
A
 ∈ Z

q

Alice Bob

 Private Input Private Input

 Algorithm Algorithm

 Common Inputs

sk
B
 ∈ Z

q

pk ∈ Gm ∈ {0,1}*

m' := H(m) m' := H(m)

sig := sig
B
+ηsig −H(Γ 2)

σ := (sig mod q, r
x
 mod q)

 Output σ ∈ (Z
q
,Z

q
)

sig
A
 := m' · t

A
1

 + r
x
 · t
A
2

Γ 1 := t
B
1 · R

φ, k'
A
 ← Z

q

D
B
 := k

B
 · GD

BR' := k'
A

 · D
B

k
A
 := H(R') + k'

A

R' R := H(R') · D
B

 + R'

(r
x
, r

y
) = R(r

x
, r

y
) = R := k

A
 · D

B

Γ 1 := G + φ · k
A

 · G − t
A
1 · R

sig
B
 := m' · θ + r

x
 · t
B
2

ηsig := H(Γ 2) + sig
A

ηsig

ηφ := H(Γ 1) + φ ηφ φ := ηφ − H(Γ 1)

Γ 2 := t
B
2 · G − θ · pkΓ 2 := t

A
1 · pk − t

A
2 · G

θ := t
B
1
 − φ/k

B

(k
A
,D
B
) (R,D

B
)

ZK-DL
(x,B)

xB=X

(X,B)

? abort if 0

DKLS18

Update: new 2-out-of-n
protocol removes bias,
but requires 1 more
message.

is message can be
pipelined (2 messages
total).

4 Two-Party Two-Message Threshold ECDSA
Functionality 4.1. FECDSA-2P(G, n): Two-party ECDSA

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1Î . . . ÎPnÎsidÕ and i œ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

...skipped...

Signing: On receiving (pre-sign, sid, sigid) from PA, parse sigid =..

AÕÎBÎsigidÕ, and ignore PA’s message if AÕ ”= A or B ”œ [n] or sigid is not
fresh or (pk-delievered, sid, A) does not exist in memory; otherwise, send
(ready, sid, sigid) to PB. When PB subsequently sends (sign, sid, sigid, m),
if (pk-delievered, sid, B) exists in memory, then

12. Sample ‡ Ω ECDSASign(G, sk, m) and parse (s, r
x) ..= ‡.

13. If PA is corrupt, then send (leakage, sid, sigid, r
x) directly to S.

14. Send (sig-req, sid, sigid, m) to PA.

15. If PA responds to the signature request with (proceed, sid, sigid, m) such
that the value of m is the same as the one previously supplied by PB,
then send (signature, sid, sigid, ‡) to PB and ignore all future messages
with the signature ID sigid.

16. If PA responds to the signature request with (fail, sid, sigid), then send
(failure, sid, sigid) to PB and ignore all future messages with the sig-
nature ID sigid.

Protocol 4.2. fiECDSA-2P(G, n): Two-Party ECDSA
This protocol is parameterized by the party count n and the elliptic curve
G = (G, G, q). The setup phase runs once with parties P1, . . . , Pn, and the
signing phase may be run many times between (varying) pairs of parties.
In the context of signing, the parties are labeled PA (Alice) and PB (Bob),
where {A, B} ™ [n]. The parties in in this protocol interact with the ideal
functionalities FRDL

CP (2), FMul(q), and FDLKeyGen(G, n, t).

Setup:

1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (key-pair, sid, pk, p(i)) in
memory. If not, then Pi sends (keygen, sid) to FDLKeyGen(G, n, 2).

2. On receiving (key-pair, sid, pk, p(i)) from FDLKeyGen(G, n, 2), each
party Pi outputs (public-key, sid, pk) to the environment and stores

25

Updated protocol

φ+1/k
A

t
A
1

1/k
B

1/k
B

t
B
1

1/k
A

sk
B
/k
B

t
B
2 := t

B
2a + t

B
2b

k
B
← Z

q

p(A) ∈ Z
q

Alice Bob

Private Inputs Private Inputs

Algorithm Algorithm

Common Inputs

p(B) ∈ Z
q

pk ∈ Gm ∈ {0,1}*

φ, k
A
← Z

q

D
B

:= k
B

·G

D := k ·G

D
BR

Com

:= k
A

A A

·D
B

sk /k
AA

Triple Mul
α1 β1α2 α3

t

β2 β3

A
1 t

A
2a t

A
2b t

B
1 t

B
2a t

B
2b

ω := Encode2(cR,β1,β 2)

w := ω γ ext

v0 := Prg
extid

(s
i
0)

i∈ [1,κ]

v1 := Prg
extid

(s
i
1)

i∈ [1,κ]

w := 2j−1 ·w
j

j∈ [1, ']

ψ := Transpose(v0)

u := v
i
0⊕v

i
1⊕w

i∈ [1,κ]
χ := {H(j u)}

j∈ [1, ']

w' := (w
j

·χ
j
)

j∈ [1, ']

v' := (ψ
j
∧ χ

j
)

j∈ [1, ']

α 2 := {c
j

·α2}
j∈ [1,2κ+2s]

α 3 := {c
j

·α3}
j∈ [1,2κ+2s]

v∇ := Prg
extid

(s
i
∇ i)

i∈ [1,κ]

α 1:={c
j

·α1}
j∈ [1,2κ+2s]

z := v
i
∇ i⊕(∇

i
·u

i
)

i∈ [1,κ]
ζ := Transpose(z)

abort if z' /= v'⊕ (w'∧∇)

z' := ζ
j
∧ H(j u) ∇ := 2i−1 ·∇

i

j∈ [1, '] i∈ [1,κ]

τ := H
1
2(j (ζ

j
⊕∇))−H

1
2(j ζ

j
) + α

j
1

j∈ [1,2κ]

H(j (ζ
j
⊕∇))−H(j ζ

j
) + α 2

j−2κ
j∈ (2κ,4κ]

H
2
2(j (ζ

j
⊕∇))−H

2
2(j ζ

j
) + α

j
3

j∈ [1,2κ]

H
1
3(j (ζ

j
⊕∇))−H

1
3(j ζ

j
) + α 1

j−2κ
j∈ (4κ,]

H
2
3(j (ζ

j
⊕∇))−H

2
3(j ζ

j
) + α 2

j−2κ
j∈ (4κ,]

H
3
3(j (ζ

j
⊕∇))−H

3
3(j ζ

j
) + α 3

j−2κ
j∈ (4κ,]

t
A
1 := H

1
2(j ζ

j
) + H

1
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
A
2a := H(j ζ

j
) + H

2
3(j ζ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
A
2b := H

2
2(j ζ

j
) + H

3
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
1 := (w

j
·τ

j
) + (w

j
·τ

j+2κ)− H
1
2(j ψ

j
)− H

1
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
2a := (w

j
·τ

j
) + (w

j
·τ

j+2κ+2s
)− H(j ψ

j
)− H

2
3(j ψ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
B
2b := (w

j−4κ
·τ

j
)+ (w

j
·τ

j+2κ+4s
)− H

2
2(j ψ

j
)− H

3
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

j∈ [1,2κ]

j∈ (2κ,4κ]

j∈ (4κ,6κ]

j∈ (4κ,]

j∈ (4κ,]

j∈ (4κ,]

t
A
2 := t

A
2a + t

A
2b

u,w',v'

τ

t
A
0 := λ

A,B
·p(A) t

B
0 := λ

B,A
·p(B)

= 4κ + 2s ' = + κOT c := {2i−1}
i∈ [1,κ] c

R

s0, s1∈ Zκ
q

s∇ ∈ Zκ
q

∇ ∈ {0,1}κ

cR←Z
q

κ + 2s

m' := H(m) m' :=

=

H(m)

sig := sig
B
+ηsig−H(Γ 2)

σ := (sig mod q, r
x

mod q)

Output σ ∈ (Z
q
,Z

q
)

abort if Verify(pk,σ) /= 1

sig
A

:= m' · t
A
1 + r

x
· t
A
2

Γ 1 := t
B
1 ·R

R := k ·D
AB

(r
x
, r

y
) =

(r
x
, r

y
) = R := k

A
·D
B

Γ 1 := G+φ·k
A
·G−t

A
1 ·R

sig
B

:= m'· θ'+r
x

· t
B
2

ηsig := H(Γ 2) + sig
A

ηsig

ηφ := H(Γ 1)+φ ηφ φ := ηφ−H(Γ 1)

Γ 2 := t
B
2 ·G−θ·pk

θ := t
B
1−φ/k

B

t
B
1 θ' θ -/kB

-

ZK-COM

D
A

(k
A
,D
A
) Com

ZK-COM
(x,B ,Com)

xB=X

(Com)

? abort if 0

GΓ 2 := t
A
1 ·pk−t

A
2 ·

1

1

1

Updated protocol

φ+1/k
A

t
A
1

1/k
B

1/k
B

t
B
1

1/k
A

sk
B
/k
B

t
B
2 := t

B
2a + t

B
2b

k
B
← Z

q

p(A) ∈ Z
q

Alice Bob

Private Inputs Private Inputs

Algorithm Algorithm

Common Inputs

p(B) ∈ Z
q

pk ∈ Gm ∈ {0,1}*

φ, k
A
← Z

q

D
B

:= k
B

·G

D := k ·G

D
BR

Com

:= k
A

A A

·D
B

sk /k
AA

Triple Mul
α1 β1α2 α3

t

β2 β3

A
1 t

A
2a t

A
2b t

B
1 t

B
2a t

B
2b

ω := Encode2(cR,β1,β 2)

w := ω γ ext

v0 := Prg
extid

(s
i
0)

i∈ [1,κ]

v1 := Prg
extid

(s
i
1)

i∈ [1,κ]

w := 2j−1 ·w
j

j∈ [1, ']

ψ := Transpose(v0)

u := v
i
0⊕v

i
1⊕w

i∈ [1,κ]
χ := {H(j u)}

j∈ [1, ']

w' := (w
j

·χ
j
)

j∈ [1, ']

v' := (ψ
j
∧ χ

j
)

j∈ [1, ']

α 2 := {c
j

·α2}
j∈ [1,2κ+2s]

α 3 := {c
j

·α3}
j∈ [1,2κ+2s]

v∇ := Prg
extid

(s
i
∇ i)

i∈ [1,κ]

α 1:={c
j

·α1}
j∈ [1,2κ+2s]

z := v
i
∇ i⊕(∇

i
·u

i
)

i∈ [1,κ]
ζ := Transpose(z)

abort if z' /= v'⊕ (w'∧∇)

z' := ζ
j
∧ H(j u) ∇ := 2i−1 ·∇

i

j∈ [1, '] i∈ [1,κ]

τ := H
1
2(j (ζ

j
⊕∇))−H

1
2(j ζ

j
) + α

j
1

j∈ [1,2κ]

H(j (ζ
j
⊕∇))−H(j ζ

j
) + α 2

j−2κ
j∈ (2κ,4κ]

H
2
2(j (ζ

j
⊕∇))−H

2
2(j ζ

j
) + α

j
3

j∈ [1,2κ]

H
1
3(j (ζ

j
⊕∇))−H

1
3(j ζ

j
) + α 1

j−2κ
j∈ (4κ,]

H
2
3(j (ζ

j
⊕∇))−H

2
3(j ζ

j
) + α 2

j−2κ
j∈ (4κ,]

H
3
3(j (ζ

j
⊕∇))−H

3
3(j ζ

j
) + α 3

j−2κ
j∈ (4κ,]

t
A
1 := H

1
2(j ζ

j
) + H

1
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
A
2a := H(j ζ

j
) + H

2
3(j ζ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
A
2b := H

2
2(j ζ

j
) + H

3
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
1 := (w

j
·τ

j
) + (w

j
·τ

j+2κ)− H
1
2(j ψ

j
)− H

1
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
2a := (w

j
·τ

j
) + (w

j
·τ

j+2κ+2s
)− H(j ψ

j
)− H

2
3(j ψ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
B
2b := (w

j−4κ
·τ

j
)+ (w

j
·τ

j+2κ+4s
)− H

2
2(j ψ

j
)− H

3
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

j∈ [1,2κ]

j∈ (2κ,4κ]

j∈ (4κ,6κ]

j∈ (4κ,]

j∈ (4κ,]

j∈ (4κ,]

t
A
2 := t

A
2a + t

A
2b

u,w',v'

τ

t
A
0 := λ

A,B
·p(A) t

B
0 := λ

B,A
·p(B)

= 4κ + 2s ' = + κOT c := {2i−1}
i∈ [1,κ] c

R

s0, s1∈ Zκ
q

s∇ ∈ Zκ
q

∇ ∈ {0,1}κ

cR←Z
q

κ + 2s

m' := H(m) m' :=

=

H(m)

sig := sig
B
+ηsig−H(Γ 2)

σ := (sig mod q, r
x

mod q)

Output σ ∈ (Z
q
,Z

q
)

abort if Verify(pk,σ) /= 1

sig
A

:= m' · t
A
1 + r

x
· t
A
2

Γ 1 := t
B
1 ·R

R := k ·D
AB

(r
x
, r

y
) =

(r
x
, r

y
) = R := k

A
·D
B

Γ 1 := G+φ·k
A
·G−t

A
1 ·R

sig
B

:= m'· θ'+r
x

· t
B
2

ηsig := H(Γ 2) + sig
A

ηsig

ηφ := H(Γ 1)+φ ηφ φ := ηφ−H(Γ 1)

Γ 2 := t
B
2 ·G−θ·pk

θ := t
B
1−φ/k

B

t
B
1 θ' θ -/kB

-

ZK-COM

D
A

(k
A
,D
A
) Com

ZK-COM
(x,B ,Com)

xB=X

(Com)

? abort if 0

GΓ 2 := t
A
1 ·pk−t

A
2 ·

1

1

1

This round can be pipelined with
the next instance.

2

Protocol maintains OT
state, so this change is
no additional burden.

Key refresh (proactive security)
Everyone has a key for pk. Everyone has a new key for pk.

2

Refresh

Key refresh (proactive security)

2-out-of-n

Everyone has a key for pk. Everyone has a new key for pk.

2

Refresh

Key refresh (proactive security)

2-out-of-n

Everyone has a key for pk.

2-out-of-n

Everyone has a new key for pk.

2

Refresh

Key refresh is easy [KMOS21]

Beaver trick to refresh
pairwise OTE with XOR.

PRG Seed.

Re-run DKG.
Re-run OTE.

Works well because our
key setup is fast.

2-out-of-n k-out-of-n

TLDR: Key setup times are CRITICAL

Paillier and other schemes require a heavy
key setup which makes refresh heavy.

Reason: (CAN’T Rerandomize Paillier N)

LAN/WAN k-out-of-k 2019

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9

5/5 9 288 328

16/1 10 26.3 181

16/16 10 3045 1676

40/1 12 60.8 539

40/5 12 592 743

128/1 13 193.2 2300

128/16 13 4118 3424

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN slowdown due to round complexity.

Milliseconds

3

LAN/WAN k-out-of-k 2019

log(t)+6

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9

5/5 9 288 328

16/1 10 26.3 181

16/16 10 3045 1676

40/1 12 60.8 539

40/5 12 592 743

128/1 13 193.2 2300

128/16 13 4118 3424

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

WAN slowdown due to round complexity.

Milliseconds

3

Updated
protocol

Com1

Mul

Mul

Ri
ri

ski

To party Pj

From party Pj

(τR
i , τG

i , τpk
i , ξi) ← ℤ4

q Open1

Com2(ui, Γ1,2
i , T1,2

i , ξi)
f(Γi, ⋯, ξi) → Ξi

Open2

ρR
i , ρG

i , ρpk
i

Verify check equations

sigi

5 Rounds
No ZK proofs
No hidden fees

Mostly Symmetric
operations for signing.
(Check eqns use 13 ec
ops)

(ui, Γ1,2
i , T1,2

i , ξi)

Ri

OT Extensions

Our implementation is moving to SoftSpoken OT.

Roy shows a break in KOS for special cases of 𝔽2k

The break does not apply to , but it identifies a gap in the proof.k = 128

Concurrency issue in implementation.
If one instance aborts, all should abort. Fixed. [Riva]

4

Gaps between eory and Practice
Random Oracle Model

Interparty Communication

[UX] Initializing the session, argument checking

Use of Fiat-Shamir

If the protocol needs a programmable
Random Oracle, every (sub)protocol
instance needs a different RO.

One way is to hash a unique prefix.
Several recent bug bounties on this issue.

5

Our ’17 academic implementation spent
574 lines synchronizing fresh RO tags.

Encouraged me to learn TLA+ spec.
Found a simpler way <100l.

e elephant in
the room is
straight-line

extractability.

A protocol that uses ZK proofs in a
concurrent seing needs to extract
witnesses without rewinding. For standard

security notions.

A protocol that uses ZK proofs in a
concurrent seing needs to extract
witnesses without rewinding.

Fiat-Shamir requires rewinding to extract a witness.

The best approach is straight-line extractability.
Pass03, Fischlin05, Kondi-shelat 21

Requires 10 copies of proof, extra prover time, verifier time.

For standard
security notions.

Concurrent seing means web3.

Or web2.
Or Internet.

But not at home…

2-out-of-n protocol
uses 1 Schnorr proof.φ+1/k

A

t
A
1

1/k
B

1/k
B

t
B
1

1/k
A

sk
B
/k
B

t
B
2 := t

B
2a + t

B
2b

k
B
← Z

q

p(A) ∈ Z
q

Alice Bob

Private Inputs Private Inputs

Algorithm Algorithm

Common Inputs

p(B) ∈ Z
q

pk ∈ Gm ∈ {0,1}*

φ, k
A
← Z

q

D
B

:= k
B

·G

D := k ·G

D
BR

Com

:= k
A

A A

·D
B

sk /k
AA

Triple Mul
α1 β1α2 α3

t

β2 β3

A
1 t

A
2a t

A
2b t

B
1 t

B
2a t

B
2b

ω := Encode2(cR,β1,β 2)

w := ω γ ext

v0 := Prg
extid

(s
i
0)

i∈ [1,κ]

v1 := Prg
extid

(s
i
1)

i∈ [1,κ]

w := 2j−1 ·w
j

j∈ [1, ']

ψ := Transpose(v0)

u := v
i
0⊕v

i
1⊕w

i∈ [1,κ]
χ := {H(j u)}

j∈ [1, ']

w' := (w
j

·χ
j
)

j∈ [1, ']

v' := (ψ
j
∧ χ

j
)

j∈ [1, ']

α 2 := {c
j

·α2}
j∈ [1,2κ+2s]

α 3 := {c
j

·α3}
j∈ [1,2κ+2s]

v∇ := Prg
extid

(s
i
∇ i)

i∈ [1,κ]

α 1:={c
j

·α1}
j∈ [1,2κ+2s]

z := v
i
∇ i⊕(∇

i
·u

i
)

i∈ [1,κ]
ζ := Transpose(z)

abort if z' /= v'⊕ (w'∧∇)

z' := ζ
j
∧ H(j u) ∇ := 2i−1 ·∇

i

j∈ [1, '] i∈ [1,κ]

τ := H
1
2(j (ζ

j
⊕∇))−H

1
2(j ζ

j
) + α

j
1

j∈ [1,2κ]

H(j (ζ
j
⊕∇))−H(j ζ

j
) + α 2

j−2κ
j∈ (2κ,4κ]

H
2
2(j (ζ

j
⊕∇))−H

2
2(j ζ

j
) + α

j
3

j∈ [1,2κ]

H
1
3(j (ζ

j
⊕∇))−H

1
3(j ζ

j
) + α 1

j−2κ
j∈ (4κ,]

H
2
3(j (ζ

j
⊕∇))−H

2
3(j ζ

j
) + α 2

j−2κ
j∈ (4κ,]

H
3
3(j (ζ

j
⊕∇))−H

3
3(j ζ

j
) + α 3

j−2κ
j∈ (4κ,]

t
A
1 := H

1
2(j ζ

j
) + H

1
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
A
2a := H(j ζ

j
) + H

2
3(j ζ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
A
2b := H

2
2(j ζ

j
) + H

3
3(j ζ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
1 := (w

j
·τ

j
) + (w

j
·τ

j+2κ)− H
1
2(j ψ

j
)− H

1
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

t
B
2a := (w

j
·τ

j
) + (w

j
·τ

j+2κ+2s
)− H(j ψ

j
)− H

2
3(j ψ

j
)

j∈ (2κ,4κ] j∈ (4κ,]

t
B
2b := (w

j−4κ
·τ

j
)+ (w

j
·τ

j+2κ+4s
)− H

2
2(j ψ

j
)− H

3
3(j ψ

j
)

j∈ [1,2κ] j∈ (4κ,]

j∈ [1,2κ]

j∈ (2κ,4κ]

j∈ (4κ,6κ]

j∈ (4κ,]

j∈ (4κ,]

j∈ (4κ,]

t
A
2 := t

A
2a + t

A
2b

u,w',v'

τ

t
A
0 := λ

A,B
·p(A) t

B
0 := λ

B,A
·p(B)

= 4κ + 2s ' = + κOT c := {2i−1}
i∈ [1,κ] c

R

s0, s1∈ Zκ
q

s∇ ∈ Zκ
q

∇ ∈ {0,1}κ

cR←Z
q

κ + 2s

m' := H(m) m' :=

=

H(m)

sig := sig
B
+ηsig−H(Γ 2)

σ := (sig mod q, r
x

mod q)

Output σ ∈ (Z
q
,Z

q
)

abort if Verify(pk,σ) /= 1

sig
A

:= m' · t
A
1 + r

x
· t
A
2

Γ 1 := t
B
1 ·R

R := k ·D
AB

(r
x
, r

y
) =

(r
x
, r

y
) = R := k

A
·D
B

Γ 1 := G+φ·k
A
·G−t

A
1 ·R

sig
B

:= m'· θ'+r
x

· t
B
2

ηsig := H(Γ 2) + sig
A

ηsig

ηφ := H(Γ 1)+φ ηφ φ := ηφ−H(Γ 1)

Γ 2 := t
B
2 ·G−θ·pk

θ := t
B
1−φ/k

B

t
B
1 θ' θ -/kB

-

ZK-COM

D
A

(k
A
,D
A
) Com

ZK-COM
(x,B ,Com)

xB=X

(Com)

? abort if 0

GΓ 2 := t
A
1 ·pk−t

A
2 ·

k-out-of-n does not
use ZK proofs. Avoids

this overhead.

Com1

Mul

Mul

Ri
ri

ski

(τR
i , τG

i , τpk
i , ξi) ← ℤ4

q Open1

Com2(ui, Γ1,2
i , T1,2

i , ξi)
f(Γi, ⋯, ξi) → Ξi

Open2

ρR
i , ρG

i , ρpk
i

Verify check equations

sigi

(ui, Γ1,2
i , T1,2

i , ξi)

Ri

Paillier needs proofs to sign

CGGMP

How to avoid straight-line extraction penalty?

Protocol is run on devices owned by the same entity.
Enforces each device serializes its executions.

Does not work if one entity is a server (common Bob for many clients).

e really really difficult issues6

e environment Z

k-out-of-n

Starting assumptions are hard:
common knowledge of participants, msg, session id,
authenticated channels.

Setup needs many scans

All devices are local, same owner, k-out-of-k at setup.

qr scan

qr scan qr scan

Growing participant set

K-out-of-k already
setup.

Want to setup k-out-
of-(k+1).

Changing threshold

K-out-of-k already
setup.

Want to setup
(k+1)-out-of-(k+1).

Handled using
key refresh
methods.

66.5 ms
348 ms

87.1 ms

235 ms

Parties are not local

common knowledge of participants, and session id,
authenticated channels.

Recovery

2-out-of-2

I lost my phone
(key share)

…before I was able to
setup a 2-out-of-3

Is threshold a 10x better experience for
{user, organization}?

Appendix

