Careful with MAc-then-SIGn: A Computational Analysis of the EDHOC Lightweight Authenticated Key Exchange Protocol

Felix Günther and Marc Ilunga

March 27, 2023

Felix Günther and Marc Ilunga

Proliferation of low-powered devices

Image by Moritz Kindler

- Limited computing power
- Bandwidth constraints
- Plagued by vulnerabilities¹

 $^{^1}$ Burgess, "Smart dildos and vibrators keep getting hacked – but Tor could be the answer to safer connected sex".

Proliferation of low-powered devices

Image by Moritz Kindler

- Limited computing power
- Bandwidth constraints
- Plagued by vulnerabilities¹

 $^{^{1}}$ Burgess, "Smart dildos and vibrators keep getting hacked – but Tor could be the answer to safer connected sex".

Missing satisfactory solutions

- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

 $^{^2}$ Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

Missing satisfactory solutions

- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

 $^{^2}$ Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

- Missing satisfactory solutions
- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

 2 Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

- Missing satisfactory solutions
- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

²Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

- Missing satisfactory solutions
- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

²Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

- Missing satisfactory solutions
- EDHOC: a proposal by the IETF LAKE WG.
- Use case: OSCORE¹ protocol (secure transport)
- 4 mutual authentication methods (static DH and/or Signature)
 - This talk: SIG-SIG
 - Design similar to TLS1.3 and based on SIGMA²

¹Selander et al., *Object Security for Constrained RESTful Environments (OSCORE)*.

²Krawczyk, "SIGMA: The "SIGn-and-MAc" Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols".

TLS 1.3 is a secure authenticated key exchange protocol

Q: Why not simply use TLS 1.3?A: It is not lightweight enough.

TLS 1.3 is a secure authenticated key exchange protocol

Q: Why not simply use TLS 1.3?A: It is not lightweight enough.

(D)TLS 1.3 is not lightweight: up to 7x bandwidth usage

	Total protocol size (bytes) ¹
DTLS 1.3 (ECDHE)	880
TLS 1.3 (ECDHE)	789
EDHOC (STAT-STAT)	101

¹empty citation.

 $\frac{\text{INITIATOR}(1)}{x \stackrel{\text{\tiny{l}}}{\leftarrow} \mathbb{Z}_q; G_x \leftarrow xG}$ $\frac{\text{Responder}(1)}{y \stackrel{\text{\tiny{l}}}{\leftarrow} \mathbb{Z}_q; G_y \leftarrow yG}$

INITIATOR(2)

INITIATOR (1) $x \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_{q}; G_{x} \leftarrow xG$ $\operatorname{Responder}(1)$ $y \stackrel{\$}{\leftarrow} \mathbb{Z}_q; G_v \leftarrow yG$ $\tau_2 \leftarrow \mathsf{MAC}_{K_m}(\mathsf{id}_B)$ $\sigma_2 \leftarrow \text{Sign}(sk_R, \tau_2 \dots)$ INITIATOR(2) $\tau_3 \leftarrow \mathsf{MAC}_{K_m}(\mathsf{id}_W)$ $\sigma_3 \leftarrow \text{Sign}(sk_1, \tau_3, \ldots)$

EDHOC in SIG-SIG Mode: An AKE with identity protection

INITIATOR (1) $x \xleftarrow{\$} \mathbb{Z}_a; G_x \leftarrow xG$ $\operatorname{Responder}(1)$ $y \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_q; G_v \leftarrow yG$ $\tau_2 \leftarrow \mathsf{MAC}_{K_m}(\mathsf{id}_B)$ $\sigma_2 \leftarrow \text{Sign}(sk_R, \tau_2 \dots)$ INITIATOR(2) $\tau_3 \leftarrow \mathsf{MAC}_{K_{\mathsf{m}}}(\mathsf{id}_{W})$ $\sigma_3 \leftarrow \text{Sign}(sk_1, \tau_3 \ldots)$

EDHOC in SIG-SIG Mode: An AKE $\,\,pprox\,$ SIGMA

Initiator (1)
$x \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \mathbb{Z}_q; G_x \leftarrow xG$
$\operatorname{Responder}(1)$
$y \xleftarrow{\$} \mathbb{Z}_q; G_y \leftarrow yG$
$\tau_2 \gets MAC_{\mathcal{K}_m}(id_B)$
$\sigma_2 \leftarrow Sign(\mathit{sk}_R, \tau_2 \ldots)$
INITIATOR(2)
$\tau_3 \gets MAC_{\mathcal{K}_m}(id_W)$
$\sigma_3 \leftarrow Sign(\mathit{sk_l}, \tau_3 \ldots)$

EDHOC SIG-SIG \approx SIGMA: MAC "under" signature

$$\begin{aligned} \tau_2 \leftarrow \mathsf{MAC}_{K_m}(\mathsf{id}_B) \\ \sigma_2 \leftarrow \mathsf{Sign}(sk_R, \tau_2 \ldots) \end{aligned}$$

EDHOC SIG-SIG \approx SIGMA: Abbreviated identities

- id_X Short credential identifier for X
- size ≪ X.509 Cert

need not be unique¹

applications MUST NOT assume that 'kid' values are unique and several keys associated with a 'kid' may need to be checked [by the recipient] before the correct one is found.

EDHOC SIG-SIG \approx SIGMA: Abbreviated identities

id_X Short credential identifier for X
size ≪ X.509 Cert

need not be unique¹

applications MUST NOT assume that 'kid' values are unique and several keys associated with a 'kid' may need to be checked [by the recipient] before the correct one is found.

¹Selander, Mattsson, and Palombini, Ephemeral Diffie-Hellman Over COSE (EDHOC) – draft-ietf-lake-edhoc-17, Section 3.5.3.

Abbreviated identifiers introduce new challenges

RunInit2

. . .

. . .

 $\begin{array}{l} \text{foreach } (U, pk_U) \text{ with } \text{id}_U = \text{id}_B : \\ \tau_2 \leftarrow \mathsf{MAC}(\text{id}_U, \ldots) \\ \text{if } \operatorname{Sig.Vf}(pk_U, \tau_2 \ldots, \sigma_2) = 1 : \\ \text{pid} \leftarrow U; \text{ endforeach} \\ \text{abort } \text{if } \text{pid} = \bot \end{array}$

Abbreviated identifiers introduce new challenges

RunInit2

. . .

. . .

 $\begin{array}{l} \text{foreach } (U, pk_U) \text{ with } \text{id}_U = \text{id}_B : \\ \tau_2 \leftarrow \mathsf{MAC}(\text{id}_U, \ldots) \\ \text{if Sig.Vf}(pk_U, \tau_2 \ldots, \sigma_2) = 1 : \\ \text{pid} \leftarrow U; \text{ endforeach} \\ \text{abort } \text{if pid} = \bot \end{array}$

Abbreviated identifiers introduce new challenges

What if an attacker also uses id_B ? Duplicate Signature Key Selection attacks.

RunInit2

. . .

. . .

 $\begin{array}{l} \text{foreach } (U, pk_U) \text{ with } \text{id}_U = \text{id}_B : \\ \tau_2 \leftarrow \mathsf{MAC}(\text{id}_U, \ldots) \\ \text{if } \operatorname{Sig.Vf}(pk_U, \tau_2 \ldots, \sigma_2) = 1 : \\ \text{pid} \leftarrow U; \text{ endforeach} \\ \text{abort } \text{if } \text{pid} = \bot \end{array}$

DSKS attacks: Signature unforgeability is not enough

■ EUF-CMA \Rightarrow cannot find (pk^*, m^*) : Sig.Vf $(pk^*, m^*, \sigma) = 1$ (For honestly generated σ)

Andrew Ayer, 2015: DSKS attack in the ACME protocol with RSA signatures impacts Let's Encrypt

DSKS attacks: Signature unforgeability is not enough

- EUF-CMA \Rightarrow cannot find (pk^*, m^*) : Sig.Vf $(pk^*, m^*, \sigma) = 1$ (For honestly generated σ)
- Andrew Ayer, 2015: DSKS attack in the ACME protocol with RSA signatures impacts Let's Encrypt

DSKS vs SIGMA: identity misbinding (w/ strong attackers)

DSKS vs SIGMA: identity misbinding (w/ strong attackers)

EDHOC provides strong authentication guarantees even under colliding identifiers

- Assuming universal exclusive ownership¹ of the signature schemes
- S-UEO for signature scheme Σ (informal):
 - Key pair: $(pk, sk) \xleftarrow{\$} \Sigma.KGen()$
 - Adversary A obtains $set(m_i, \sigma_i)$ (produced by sk)
 - Goal of \mathcal{A} : Produce (pk^*, m^*) s.t $Vf(pk^*, m^*, \sigma_j) = 1$ and $pk \neq pk^*$
 - S-UEO $\implies \mathcal{A}$ cannot succeed.

¹Pornin and Stern, "Digital Signatures Do Not Guarantee Exclusive Ownership".

Security Model: Multi-Stage Key Exchange Model

¹Boyd et al., "ASICS: Authenticated Key Exchange Security Incorporating Certification Systems".

MSKE: Security goals

Key indistinguishability

Forward security

• Explicit authentication: When a session accepts with an authenticated peer, there is indeed a corresponding session of that peer.

MSKE: Security goals

Key indistinguishability

Forward security

• Explicit authentication: When a session accepts with an authenticated peer, there is indeed a corresponding session of that peer.

MSKE: Security goals

- Key indistinguishability
- Forward security
- Explicit authentication: When a session accepts with an authenticated peer, there is indeed a corresponding session of that peer.

MSKE Security of EDHOC SIG-SIG

MSKE security of EDHOC SIG-SIG

Let \mathcal{A} be an MSKE adversary. For at most n_{II} users and n_S sessions, there exists adversaries \mathcal{B}_i such that: $\mathsf{Adv}^{\mathsf{MSKE}}_{\mathcal{A}}(\mathsf{EDHOC} ext{-Sig-Sig}) \leq rac{{n_{\mathcal{S}}}^2}{q} +$ $Adv^{CR}_{\mathcal{B}}(H) +$ $4n_{S} \begin{pmatrix} n_{U} \cdot \operatorname{Adv}_{\mathcal{B}_{I,2}}^{\text{SUF-CMA}}(\operatorname{Sig}) + \\ \operatorname{Adv}_{\mathcal{B}_{L}}^{\text{S-UEO}}(\operatorname{Sig}) \end{pmatrix} +$ $4n_{S} \begin{pmatrix} n_{U} \cdot \mathsf{Adv}^{\mathsf{EUF}\text{-}\mathsf{CMA}}_{\mathcal{B}_{II,A2}}(\mathsf{Sig}) + \\ \mathsf{Adv}^{\mathsf{snPRF}\text{-}\mathsf{ODH}}_{\mathcal{B}_{II,B2}}(\mathsf{Extract}) + \\ \mathsf{Adv}^{\mathsf{PRF}}_{\mathcal{B}_{II,B2}}(\mathsf{Expand}) \end{pmatrix}$

SHA2, Shake128	
Ed25519	
ECDSA	
Ed25519	
ECDSA	
Ed25519	
ECDSA	
HKDF.Extract	
KMAC	
HKDF.Expand	
KMAC	
	SHA2, Shake128 Ed25519 ECDSA Ed25519 ECDSA Ed25519 ECDSA HKDF.Extract KMAC HKDF.Expand

MSKE Security of EDHOC SIG-SIG

MSKE security of EDHOC SIG-SIG

Let \mathcal{A} be an MSKE adversary. For at most n_{II} users and n_S sessions, there exists adversaries \mathcal{B}_i such that: $\mathsf{Adv}^{\mathsf{MSKE}}_{\mathcal{A}}(\mathsf{EDHOC}\operatorname{-Sig-Sig}) \leq \frac{n_{\mathcal{S}}^2}{q} +$ $Adv^{CR}_{\mathcal{B}}(H) +$ $4n_{S} \begin{pmatrix} n_{U} \cdot \operatorname{Adv}_{\mathcal{B}_{l,2}}^{\text{SUF-CMA}}(\text{Sig}) + \\ \operatorname{Adv}_{\mathcal{B}}^{\text{S-UEO}}(\text{Sig}) \end{pmatrix} +$ $4n_{S} \begin{pmatrix} n_{U} \cdot \mathsf{Adv}^{\mathsf{EUF-CMA}}_{\mathcal{B}_{II,A2}}(\mathsf{Sig}) + \\ \mathsf{Adv}^{\mathsf{snPRF-ODH}}_{\mathcal{B}_{II,B2}}(\mathsf{Extract}) + \\ \mathsf{Adv}^{\mathsf{PRF}}_{\mathcal{B}_{II,B2}}(\mathsf{Expand}) \end{pmatrix}$

Assumption	scheme	
Collision resistance	SHA2, Shake128	 Image: A second s
SUF-CMA	Ed25519	 Image: A second s
	ECDSA	×
S-UEO	Ed25519	 Image: A second s
	ECDSA	×
EUF-CMA	Ed25519	 Image: A second s
	ECDSA	1
PRF-ODH	HKDF.Extract	 Image: A second s
	KMAC	(?)
PRF	HKDF.Expand	 Image: A start of the start of
	KMAC	1

ECDSA might be fine for **EDHOC**

S-UEO ★: EDHOC includes the pub key alongside messages to be signed (✓)
 SUF-CMA ★: Implementations could use "canonical" signatures (✓ ?).

Positive collaboration with the LAKE working group

- Numerous contributions to EDHOC by several parties
 - Jacomme et al.: Full symbolic analysis of latest draft¹
 - Cottier & Pointcheval: Computation analysis of STAT-STAT²
 - Norman et al.: Early symbolic analysis³
- Reminiscent of development of TLS 1.3

¹Jacomme et al., "A comprehensive, formal and automated analysis of the EDHOC protocol".

²Cottier and Pointcheval, Security Analysis of the EDHOC protocol.

³Norrman, Sundararajan, and Bruni, "Formal Analysis of EDHOC Key Establishment for Constrained IoT Devices".

Chasing a moving target

Worked through drafts (12-17)

In an ideal world: tooling for automated proofs

Chasing a moving target

- Worked through drafts (12-17)
- In an ideal world: tooling for automated proofs

Contributions overview: Insights from our computational analysis

- Dedicated session key (PRK_{out}) added in draft 14 (with Jacomme et al.¹)
- Full credentials in transcript hashes in key derivation.
- Transcript hashes from plaintext instead of ciphertexts
- Key separation in key derivation

¹Jacomme et al., "A comprehensive, formal and automated analysis of the EDHOC protocol".

Conclusion

- EDHOC is a LAKE for constrained environments with new security challenges
- Our contributions:
 - Strong security model for the LAKE setting
 - Security analysis and proof that EDHOC(SIG-SIG) is a secure LAKE in a strong adversarial model
 - Design contributions to EDHOC
- LAKE WG highly welcoming of security analysis and inputs

See EuroS&P 2023 Paper (eprint ia.cr/2022/1705) narc.ilunga@trailofbits.com

Conclusion

- EDHOC is a LAKE for constrained environments with new security challenges
- Our contributions:
 - Strong security model for the LAKE setting
 - Security analysis and proof that EDHOC(SIG-SIG) is a secure LAKE in a strong adversarial model
 - Design contributions to EDHOC
- LAKE WG highly welcoming of security analysis and inputs

See EuroS&P 2023 Paper (eprint ia.cr/2022/1705) marc.ilunga@trailofbits.com