Cellular Radio "Null Ciphers" & Android

Yomna Nasser

Android Connectivity Security Team

yomna@google.com

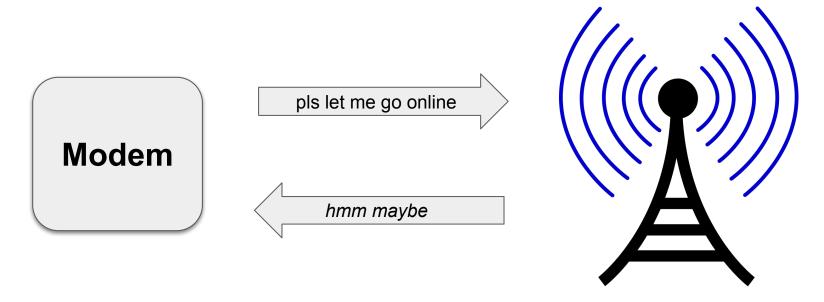
Talk overview

- How do cellular networks (fail) to use cryptography to ensure confidentiality and integrity?
- What is Android doing about it?
- What kinds of challenges come up when making radio security improvements?

Terminology

- Cell "towers" *
 - Base station (BTS)
 - Cell site
 - eNodeB (in LTE)

- Network generations

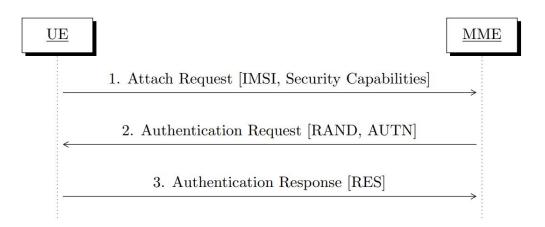

- 2G (GSM)
- 3G
- 4G (LTE)
- 5G

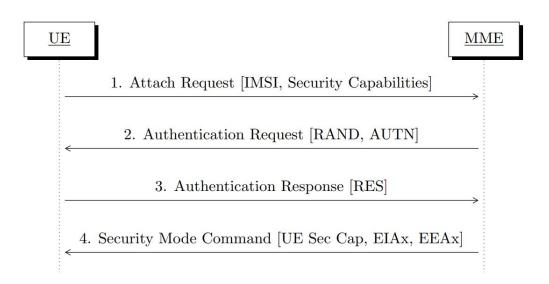
- Fake base station (FBS)

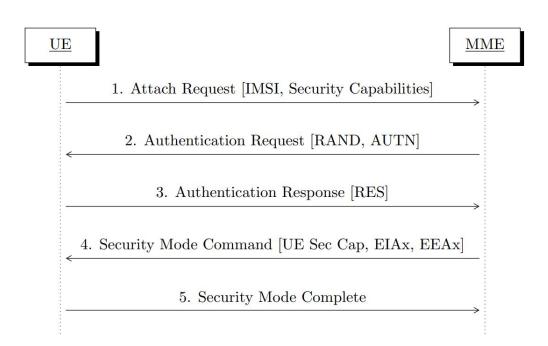
- Cell Site Simulator
- IMSI-catcher
- Stingray (brandname)
- Rogue cell tower
- Rogue base station
- "Attacker"

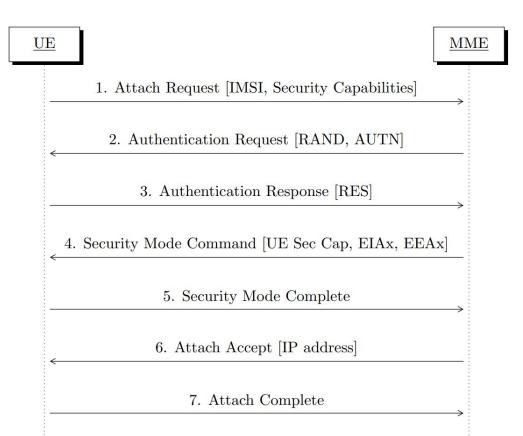
^{*} Everything in cellular has many names. Also, in urban areas instead of cell "towers" it's often just antennas mounted on buildings.


Cellular connections




^{*} The "modem" is often also called: radio / baseband / CP (Communications Processor).


^{** &}quot;User equipment" or "UE" = general term for user's phone + modem.



3GPP/GSMA Cryptographic Algorithms

Algorithms for authentication and key generation:

Cipher	Proprietary	Proprietary	Proprietary	AES	Keccak	
Input key size	Input key size 128		128	128	128, 256	
Output key size	54	54	64	128	128, 256	
Name	COMP-128-1	COMP-128-2	COMP-128-3	MILENAGE	Tuak	

Algorithms for encryption and integrity:

Cipher	Proprietary	Proprietary	KASUMI	KASUMI	KASUMI	SNOW 3G	SNOW 3G	AES	AES	ZUC	zuc
Key size	64	64	64	128	128	128	128	128	128	128	128
Mode	XOR	XOR	f8-mode	f8-mode	CBC-MAC	XOR	CW-MAC1	CTR	CMAC	XOR	CW-MAC2
Туре	ENC	ENC	ENC	ENC	INT	ENC	INT	ENC	INT	ENC	INT
2G GSM	A5/1	A5/2	A5/3	A5/4							
2G GPRS	GEA1	GIA2	GEA3	GEA4	GIA4	GEA5	GIA5				
3G UMTS				UEA1	UIA1	UEA2	UIA2				
4G LTE						128-EEA1	128-EIA1	128-EEA2	128-EIA2	128-EEA3	128-EIA3
5G NR						128-NEA1	128-NIA1	128-NEA2	128-NIA2	128-NEA3	128-NIA3

Null versions:

- 2G GSM:
 - A5/0 (encryption)
 - No integrity in GSM
- 2G GPRS:
 - GEA0 (encryption)
 - GIA0 (integrity)
- 3G UMTS:
 - UEA0
 - UIA0
- 4G LTE:
 - EEA0
 - EIA0
- 5G:
 - NEA0
 - NIA0

Paper 2021/819

Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2

Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes

Abstract

This paper presents the first publicly available cryptanalytic attacks on the GEA-1 and GEA-2 algorithms. Instead of providing full 64-bit security, we show that the initial state of GEA-1 can be recovered from as little as 65 bits of known keystream (with at least 24 bits coming from one

frame) in time 2^{40} GEA-1 evaluations and using

Matthew Green 🤣

@matthew d green

This is an amazing paper. It implies (with strong statistical evidence) that the design of a major mobile-data encryption algorithm — used in GPRS data — was deliberately backdoored by its designer.

eprint.iacr.org/2021/819

7:23 AM · Jun 16, 2021

1,127 Retweets 152 Quote Tweets 2,447 Likes

A sad reality

Lots of carriers just don't use encryption or integrity protection

	GEA0	GEA1	GEA2	GEA3	Total unique operators
Americas	4	0	1	3	8
Europe	10	0	2	43	55
Africa	19	0	1	6	26
Asia	5	0	0	6	11

Table-1: Number of operators assigning a specific cipher per region, main algorithm only (collected in 2019, 2020, 2021)

- Difficult for security researchers to help out

LTE Security Disabled—Misconfiguration in Commercial Networks

Merlin Chlosta merlin.chlosta@rub.de Ruhr University Bochum Germany David Rupprecht david.rupprecht@rub.de Ruhr University Bochum Germany Thorsten Holz thorsten.holz@rub.de Ruhr University Bochum Germany Christina Pöpper christina.poepper@nyu.edu NYU Abu Dhabi United Arab Emirates

ABSTRACT

Long Term Evolution (LTE) is the de-facto standard for mobile communication. It provides effective security features but leaves room for misunderstandings in its configuration and implementation. In

The security goals of LTE aim to provide mutual authentication, integrity and confidentiality of traffic, and location privacy. These goals and their consideration in the specification evolved from the lessons learned of previous cellular generations. Flaws and

Primary (legit) use cases for null ciphering/integrity

Emergency calls when you don't have an active SIM card

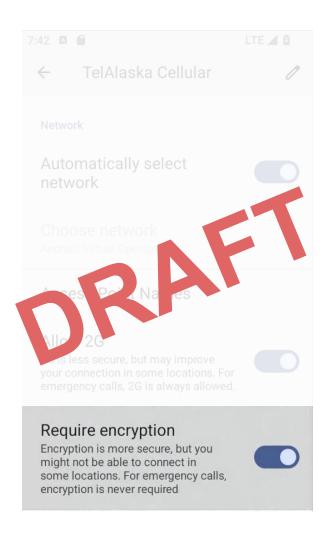
Fallback in case networks deprecate all other encryption algorithms the modem is programmed to use [1]

[1] GSMA Security Algorithm Roadmap

Cellular security matters

- Fundamental cellular infrastructure should be as secure as possible, even if we view parts of it as outdated.
- Classic voice calls and SMS aren't going away any time soon for most people.
- Cellular radio attacks are becoming more common, easier to pull off.

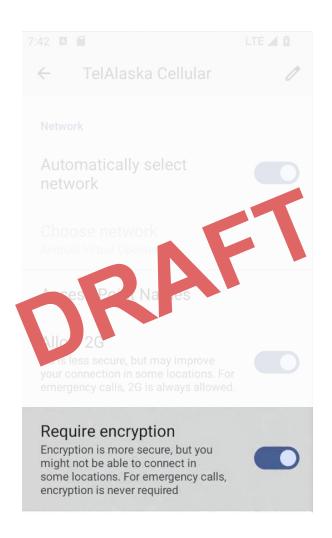
Paris IMSI-Catcher Mistaken for Bomb Was Actually Used for Health Insurance SMS Phishing Scam



Article from Commsrisk, published Feb 21 2023

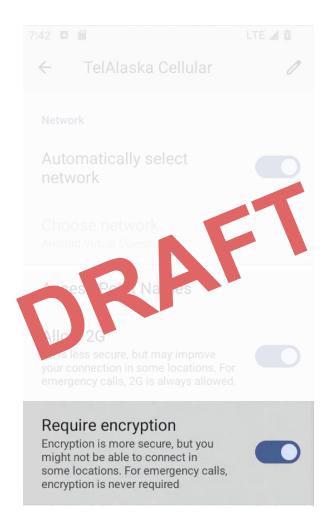
Newly supported in Android 14

You can choose to only use encrypted connections now


- Encryption requirement applies to all parts of cellular radio connection which support encryption.
- Integrity-protection is now required on all SMS & voice call traffic.
 - Modems generally are not able to support integrity-protection for mobile data due to historical & performance issues.

Newly supported in Android 14

You can choose to only use encrypted connections now


- Encryption requirement applies to all parts of cellular radio connection which support encryption.
- Integrity-protection is now required on all SMS & voice call traffic.
 - Modems generally are not able to support integrity-protection for mobile data due to historical & performance issues.
- Note: this is not related to core network encryption!

Newly supported in Android 14

→ You can choose to only use encrypted connections now →

- Encryption requirement applies to all parts of cellular radio connection which support encryption.
- Integrity-protection is now required on all SMS & voice call traffic.
 - Modems generally are not able to support integrity-protection for mobile data due to historical & performance issues.
- Note: this is not related to core network encryption!
- Note: probably requires hardware upgrades.

Caveat: "IMSI-catcher" / FBS mean many different things

Step 1 is the key part of the classic "IMSI-catching" attack!

Implementation details: Android <> modem API

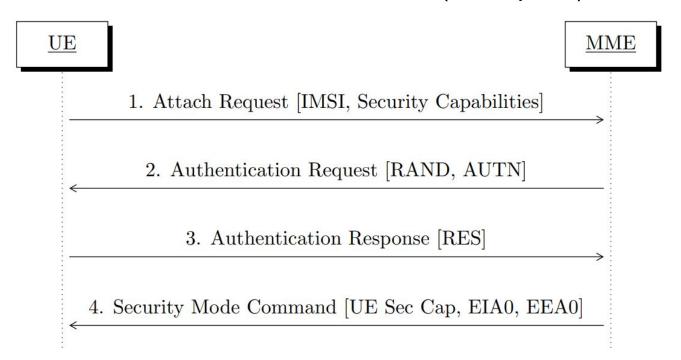
We are here —>

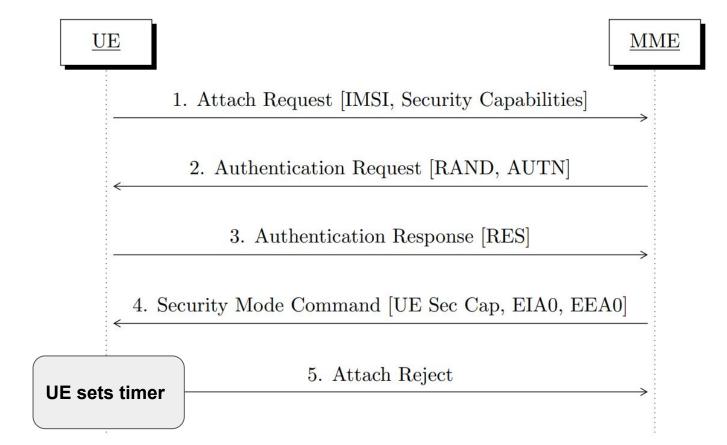
This is where we specify APIs between Android and hardware components.

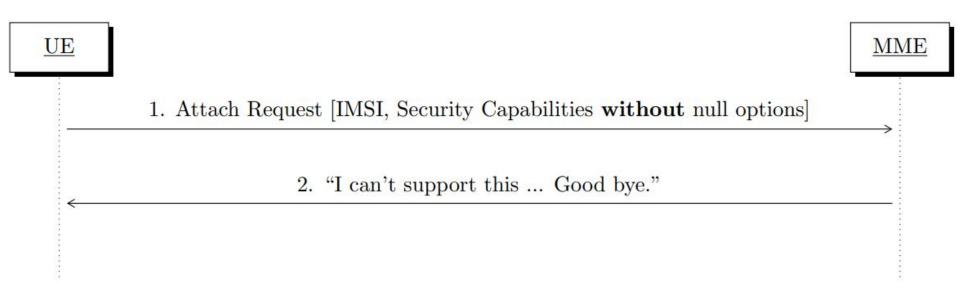
Diagram of Android OS internal layout


Past example API

```
/**
 * Requests to set the network type for searching and registering.
 * Instruct the radio to *only* accept the types of network provided.
 * setPreferredNetworkType, setPreferredNetworkTypesBitmap will not be called anymore
 * except for IRadio v1.5 or older devices.
  In case of an emergency call, the modem is authorized to bypass this
 * restriction.
  @param serial Serial number of request.
  @param networkTypeBitmap a 32-bit bearer bitmap of RadioAccessFamily
 * Response callback is IRadioResponse.setAllowedNetworkTypesBitmapResponse()
 */
                                                                                      Allow 2G
oneway setAllowedNetworkTypesBitmap(
                                                                                      2G is less secure, but may improve
        uint32 t serial, bitfield<RadioAccessFamily> networkTypeBitmap);
                                                                                      your connection in some locations.
                                                                                      For emergency calls, 2G is always
```


From:


https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/radio/ 1.6/IRadio.hal



Further reading

- Gotta Catch 'Em All: Understanding How IMSI-Catchers Exploit Cell Networks (2019): https://www.eff.org/wp/gotta-catch-em-all-understanding-how-imsi-catchers-exploit-cell-networks
- LTE security disabled: misconfiguration in commercial networks by Merlin Chlosta,
 David Rupprecht, Thorsten Holz, Christina Pöpper:
 https://dl.acm.org/doi/10.1145/3317549.3324927

Thanks to: Roger Piqueras Jover, Gil Cukierman, and Dominik Maier:)

