From Theory to Practice to Theory:
Lessons Learned in Multi-Party
Schnorr Signatures

Why Multi-Party Schnorr Signatures”? Why now?

2-Round
“Efficient Identification 3-Round Multi-Party o
and Signatures Multi-Party Schnorr Bitcoin moves NIST initial draft
for Smart Cards,” Multi-Party Schnorr Schnorr (MuSig2, DWMS, to Schnorr call for threshold
Schnorr, 1990. (Stinson & Strobl), 2001. (MuSig), 2018. FROST), 2020. (BIP340), 2021. signatures, 2023.
Patent on Schnorr Patent on Schnorr FROSTZ, Improved FROST CFRG NIST standardizes
signatures, filed 1991. signatures, expired 2008. proof for draft, 2021. single-party

FROST, 2021. EdDSA, 2022.

(Single-Party) Schnorr Signature Scheme (Schoo]

£

6= (R,2)

S ———_—

To generate a key pair:
PK « gsk

(Single-Party) Schnorr Signature Scheme (Schoo]

£

6= (R,2)

S ———_—

To generate a key pair:
PK « gsk

To sign a message 1.
R« g’
c — H(PK,m,R)
z—r+c-sk

(Single-Party) Schnorr Signature Scheme (Schoo]

6 = (R.2) n
-_——
To generate a key pair: Verity:
PK <« g% ¢ « H(PK,m, R)

R-PK‘=go*
To sign a message 1.
R« g
c — H(PK,m,R)
z—r+c-sk

What are Threshold Signatures? [ps7, brsg]

?Public Key

e [-Out-of-n

e frusted key generation
or DKG to produce PK

(2,3) Example

What are Multi-Signatures? [inss, snos;

?Public Key

® 71-OUt-0Of-n

e Key aggregation to
oroduce PK

* 71 SIgners can be
sSpontaneous

(3,3) Example

Multi-Party Schnorr Signatures

How to share sk ?

How to share r ? \ /

7—1r+c-sk

Sig = (RQ

What do we want”?

- output signature that verifies like standard Schnorr signature

* public key looks like standard Schnorr signature public key
- few (2-3) rounds

o Stinson & Strobl 2001 uses DKG for signing
* reasonable security assumptions

» concurrent security

. Signing
Scheme Assumptions Rounds
I\/I.uS|g [I\/IPSV\./18, BDN18] 31 +ROM ;
- SimpleMuSig [BDN18, CKM21]
Multi-sigs
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM)
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Threshold i;ect)rgli [CKM23] DL+ROM
[KG20, BCKMTZ22]
FROST?2 [ckm21] OMDL+ROM 2

One-More Discrete Log (OMDL):
- stronger assumption
+ partially non-interactive schemes

. Signing
Scheme Assumptions Rounds
I\/I.uS|g [I\/IPSV\./18, BDN18] 31 +ROM ;
- SimpleMuSig [BDN18, CKM21]
Multi-sigs
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM)
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Threshold i;zg-i [CKM23] DL+ROM
[KG20, BCKMTZ22]
FROST?2 [ckm21] OMDL+ROM 2

One-More Discrete Log (OMDL):

All are concurrently secure \/ - stronger assumption
+ partially non-interactive schemes

Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

sk

t1

t1

Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

sk,

' Can forge!

Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

Affecteq:
 multi-signatures
e threshold signatures

e pblind signatures

Sk2 Solution: Force adversary to
commit to ItS nonces...
' Can forge!

MuSig2 / SpeedyMuSig / FROST/2

t1

£

Key (GGeneration: Combine / Verify:
(sk, PK.), PK

MuSig2 / SpeedyMuSig / FROST/2

t1

R.S.

1> 1

£

Key Generation: Combine / Verify:
(sk, PK.), PK

Round 1: Output R, < g'i, §. « g"

MuSig2 / SpeedyMuSig / FROST/2

t1

R.S.

1> 1

£

<
Key Generaton: — > Combine/ Verify:

(sk;, PK)), PK

Round 1: Output R, < g'i, §. « g"
Round 2: a <« H'(PK,m,{R;,S;}'_)
R =1I"_, RS/
¢ <« H(PK,m, R)
Output z; < r; + as; + csk;

MuSig2 / SpeedyMuSig / FROST/2

t1

17

<

R.S.

l

£

Key Generaton: — > Combine/ Verify:

(sk;, PK)), PK

Round 1: Output R, < g'i, §. « g"
Round 2: a <« H'(PK,m,{R;,S;}'_)
R =1I"_, RS/
¢ <« H(PK,m, R)
Output z; < r; + as; + CSki

Z=21 g
sig = (R, z)
¢ «— H(PK,m,R)
R-PK°=g* o

Adaptive Security

Static Corruption

n A

sk sk, sky

Signing
Rounds

—

———

Adaptive Security

Static Corruption

n A

sk sk, sky

Signing
Rounds

—

———

Adaptive Corruption

1.

sk

—

-

sk,

Signing
Rounds

sky

————

Adaptive Security

Static Corruption

n A

sk sk, sky
Signing
Rounds

Adaptive Corruption

n A

Skl Skz Sk3
Signing
Rounds

n v

ki sk, sk
state

Adaptive Security

Static Corruption

n A

sk sk, sky
Signing
Rounds

* Adaptive security of Sparkle [CKMZ23],
FROST forthcoming

Adaptive Corruption

n A

Skl Skz Sk3
Signing
Rounds

1 & @

sk sk, sk

state

FROST: Flexible Round-Optimized
MuSig2: Simple Two-Round Schnorr Multi-Signatures Schnorr Threshold Signatures

Chelsea Komlo
University of Waterloo, Zcash Foundation
ckomlo@uwaterloo.ca

Ian Goldberg
University of Waterloo

How to Prove Schnorr Assuming Schnorr: iang @uwaterloo.ca
Security of Multi- and Threshold Signatures

Jonas Nick!, Tim Ruffing!, and Yannick Seurin?

Elizabeth Crites!, Chelsea Komlo?, and Mary Maller?]
ROAST: Robust Asynchronous Schnorr Threshold Signatures

Tim Ruffing Viktoria Ronge Elliott Jin
Blockstream Friedrich-Alexander-Universitat Blockstream
crypto@timruffing.de Erlangen-Niirnberg eyj@blockstream.com

Better than Advertised Security for ronge@cs fau.de

Jonas Schneider-Bensch Dominique Schréder

NO - iIlt eI'aCt iVe T hI‘e S hO].d S ignat ures CISPA Helmholtz Center for Friedrich-Alexander-Universitat

Information Security Erlangen-Niirnberg
jonas.schneider-bensch@cispa.de dominique.schroeder@fau.de

Mihir Bellare!®, Elizabeth Crites?, Chelsea Komlo®, Mary Maller?,
Stefano Tessaro®, and Chenzhi Zhu®®)

A Formal Treatment of Distributed Key Generation,
Fully Adaptive Schnorr Threshold Signatures and New Constructions

Elizabeth Crites!, Chelsea Komlo?, and Mary Maller? Chelsea Komlo, Ian Goldberg, Douglas Stebila

From Theory to Practice:
A Hitchhiker's Guide

s

Unforgeability:
Attacker cannot forge signatures.

Liveness:
System can always create signatures.

Multi-Signatures vs. Threshold Signatures

=

Multi-Signatures do not Guarantee Liveness

(3,3) Example

Multi-Signatures do not Guarantee Liveness

® |f only one signer is unavailable,
signing Is Not possible.

(3,3) Example

Multi-Signatures do not Guarantee Liveness

® |f only one signer is unavailable,
signing Is Not possible.

® Needs to be handled on a

different layer of the system.

(3,3) Example

Multi-Signatures do not Guarantee Liveness

(3,3) Example

® |f only one signer is unavailable,
signing Is Not possible.
® Needs to be handled on a

different layer of the system.
® Possible to use non-interactive

key aggregation instead of DKG.

DKGs can be Cumbersome

DKGs can be Cumbersome

» Distributed Key Generation (DKG)

DKGs can be Cumbersome

» Distributed Key Generation (DKG)

+ Major pain point: DKGs require some kind of broadcast channel

DKGs can be Cumbersome

» Distributed Key Generation (DKG)
+ Major pain point: DKGs require some kind of broadcast channel

* Protocol descriptions often just assume that all communication takes place
over reliable broadcast (= consensus/BFT)

DKGs can be Cumbersome

» Distributed Key Generation (DKG)
+ Major pain point: DKGs require some kind of broadcast channel

* Protocol descriptions often just assume that all communication takes place
over reliable broadcast (= consensus/BFT)

* |Implementers often fail to understand this, or simply ignore it

How to Choose (n, t)
for Threshold Signatures ?

How to Choose (n, t)
for Threshold Signatures ?

FROST supports any choice,
but that just makes the problem harder!

Honest Majority (Classic)
=5
O 9 } 7
3

t =
Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=2 n-t=2

n

Honest Majority (Classic)

e O) °

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=2 n-t=2

may be required In consensus
systems anyway

Honest Minority

N =

OOE) "~

t=4

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=3 nh-t=1

Honest Minority

n=>5
A B el
t=4

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=3 nh-t=1

no progress with 2 bad signers
but also no forgery

Full Threshold

n=95

9§ "~

t=95

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=4 n-t=0

Full Threshold

n=25
OO 99 -
t=95

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=4 multi-signatures possible: n-t=0
(non-interactive
key aggregation, no DKG)

Robustness: the protocol succeeds so long
as at least t players participate honestly.

(required for liveness!)

FROST and Robustness

Combine

* FROST is not robust. Q — Zq

+ |— i

o = N
O— | O

(2,3) Example

FROST and Robustness

Combine

(| @

+ |— (I

o = N
O— | O

* FROST is not robust.

* If even one FROST signer issues garbage,
the resulting signature is garbage

it

(2,3) Example

FROST and Robustness

Combine

* FROST is not robust. n — {1

* If even one FROST signer issues garbage,
the resulting signature is garbage

==
+ [— I

* Then the protocol must be re-run with a
different subset of signers. ~=
¥—| 0

(2,3) Example

ROAST: Making FROST Robust

ROAST: Making FROST Robust

ROAST: Making FROST Robust

* ROAST is a wrapper picks subsets in a clever way

* At most n — t + 1 FROST runs necessary
* Resulting protocol is robust and asynchronous (no timeouts)

Standardization and
Deployment

Standardization

CFRG D. Connolly
Internet-Draft Zcash Foundation
Intended status: Informational C. Komlo
Expires: 28 July 2023 University of Waterloo, Zcash Foundation
I. Goldberg

University of Waterloo

C. A. Wood

Cloudflare

24 January 2023

Two-Round Threshold Schnorr Signatures with FROST
draftt-irtf-cfrg-frost-12

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/

Standardization

[IP: 312
Title: FROST for Spend Authorization Signatures
Owners: Conrado Gouvea <conrado@zfnd.org>
Chelsea Komlo <ckomlo@uwaterloo.ca>
Deirdre Connolly <deirdre@zfnd.org>
Status: Draft
Category: Wallet
Created: 20622-08-dd
| icense: MIT
Discussions-To: <https://github.com/zcash/zips/issues/382>
Pull-Request: <https://github.com/zcash/zips/pull/662>

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst

Standardization

BIP: 327
Title: MuSig2 for BIP348-compatible Multi-Signatures
Author: Jonas Nick <jonasd.nick@gmail.com>
Tim Ruffing <crypto@timruffing.de>
Elliott Jin <elliott.jin@gmail.com>
Status: Draft
License: BSD-3-Clause
Type: Informational

Created: 20622-83-22

https://qgithub.com/bitcoin/bips/blob/master/bip-0327.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

Standardization NIST | agmesr

NISTIR 8214C (Draft)
NIST First Call for Multi-Party Threshold Schemes

Date Published: January 25, 2023

Comments Due: April 10, 2023
Email Comments to: nistir-8214C-comments@nist.gov

Author(s)

Luis T. A. N. Branddo (Strativia), Rene Peralta (NIST)

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

FROST and MuSig2 in Practice, Today

MuSig2

N

| BlockstreamResearch / secp256k1-zkp

2 CHAINFLIP

serai-dex/seral @ LLFourn/secp256kfun

S

bifcoin/bips @ . IﬂpUt-OUtpUt-hk/mUSigz

Add BIP MuSig2

A9 @ 2 w 94 % 18
Contributors Used by Stars Forks

BlockstreamResearch/secp256k1-zkp

#223 musig: Update to

BIP v1.0.0-rc.4 (Check

pubnonce in NonceGe... muun

Self-custodial wallet for
bitcoin and lightning.

EaEmEEYs jesseposner/

nvy WNEF FROST-BIP340

BIP340 compatible implementation of

Flexible Round-Optimized Schnorr -
) 0 comments : s | es +15-7EEEN

Threshold Signatures (FROST). This work

f"‘ CR Yp To SAT is made possible with the support of
- oy ATK

Brink.
@ 2 % 20 Y 3
Issues Stars

Forks

@ real-or-random « March 3,2023 -O- 1 commit

T IN BPAaC
A 2
Contributor:

From Practice to Theory:
What open problems exist?

Efficient Deterministic Signatures

&

(Single-Party) EADSA Signature Scheme

t1

£

To generate a key pair:
Sk<$—L-; PK(—gSk

(Single-Party) EADSA Signature Scheme

t1

£

To generate a key pair:
Sk<$—t-; PK(—gSk

To sign a message m:
r— H(m,sk) ;, R« g’
¢ «— H(PK,m,R)

7 < r+csk

(Single-Party) EADSA Signature Scheme

t1

£

To generate a key pair:
Sk<$—t-; PK(—gSk

To sign a message m:
e Hin b R~
¢ «— H(PK,m,R)

7 < r+csk

(Single-Party) EADSA Signature Scheme

£

)

To generate a key pair:
Sk<$—1-; PK(—gSk

To sign a message m:
r«— H(m,sk)|; R« g’
Helps prevent

c—H (P K , 11, R) Issues arising from
7—r+c ol bad randomness.

(Single-Party) EADSA Signature Scheme

£

To generate a key pair:
Sk<$—1-; PK(—gSk

To sign a message m:
r«— H(m,sk)|; R« g’
Helps prevent

c—H (P K , 11, R) Issues arising from
7—r+c ol bad randomness.

(Single-Party) EADSA Signature Scheme

)

c=(R,2)

)

Tokgeﬁgne_ra}telD e}{ key paSLr: To verify (PK, o, m):
sk — [F ; — g ¢ — H(PK,m, R)

(?

R - PK¢ = g7

To sign a message m: output accept/reject
r — H(m,sk)|; R« g’

Helps prevent
c — H (P K, m, R) issues arising from

7—r+c ol bad randomness.

Naively applying EADSA-style
determinism to randomized
multi-party Schnorr schemes
IS nhot secure!

Naively applying EADSA-style
determinism to randomized
multi-party Schnorr schemes
IS nhot secure!

Deterministic multi-party Schnorr schemes exist,
but are performance-intensive. [NRSW20, GKMN21]

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H,(m, sk) m

PK, Ry =g" R,

-

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H,(m, sk) m

PK, Ry =g" R,

-

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H,(m, sk) m

PK, Ry =g" R,

-

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H,(m, sk) m

PK, Ry =g" R,

- :

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H,(m, sk) m

PK, Ry =g" R,

- :

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ e
PK, R, =g" R,

-

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
R=RR '
1132 R,

D ke —

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m
¥ --——
PK, Ry=g" R,
R = R|R
- . S
¢ = H(PK, R, m)

71 = 1y + csky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m
¥ --——

PK, Ry=g" R,
—————— ——————————————
A ocem

71 = 1y + csky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m
¥ --——

PK, Ry=g" R,
—————— ——————————————
A ocem

Zl=l”1+CSk1 e e

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
—>
o T T R -
Zl — 1”1 + CSkl -_—

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
—>
o T T R -
Zl — 1”1 + CSkl -_—
m

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
—>
o T T R -
Zl — 1”1 + CSkl -_—
m

r, < H(m, sky) —

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
—>
A e
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
A e
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1

r Rl

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
A e
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1

r Rl

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
A e
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1

r Rl

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
A e
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1

r Rl

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
o I T R -
3 71 = 1y + csky —_—
r, < H(m, sky) —1
Rl — grl Rl ;

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
o I T R -
3 71 = 1y + csky —_—
r, < H(m, sky) —1
Rl — grl Rl ;

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m

¥ -—

PK, Ry=g" R,
—>
o BT T B H—
{1 = I + CSkl -_—
r, < H(m, sky) D
Rl — grl Rl ;
R = R|R, —1

¢’ = H(PK, R', m)

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m

¥ -—

PK, Ry=g" R,
—>
o BT T B H—
{1 = I + CSkl -_—
r, < H(m, sky) D
Rl — grl Rl ;
R = R|R, —1

¢' = H(PK,R', m)
71 = 1y + C'sky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —

PK, Ry=g" R,
—>
A ke
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1
Rl — grl Rl ;
R = R|R, —1

¢' = H(PK,R',m) ‘1

71 = 1y + C'sky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
o BT LT B H—
Zl — 1”1 + CSkl -_—
r, < H(m, sky) —1
Rl — grl Rl ;
R = R|R, —1
C’:H(PK,R’,WI) Zl—>

71 = 1y + C'sky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
R, = gh
PK; 1

Honest party cannot detect
c = HPK,R,m) that the corrupt party has
L .
7, = r; + csky deviated from the protocol!

r, < H,(m, sk;) — 1
R =g" —»Rl
R = R,R, K
¢’ = H(PK,R'. m) g ,

71 = 1y + C'sky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ —
PK, Ry=g" R,
—>
A e] —
Zl — 1”1 + CSkl -_—
m
————
R,
—>
;
¢' = H(PK,R',m) 1

71 = 1y + C'sky

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ D
PK, Ry=g" R,
—>
A e R
Zl — 1”1 + CSkl -_—
m
G
R,
—>
;
¢' = H(PK,R', m) <1 —
71 =1y + ¢'sky g = YV

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
¥ D
PK, Ry=g" R,
—>
A e R
Zl — 1”1 + CSkl -_—
m
G
R,
—>
;
¢' = H(PK,R', m) <1 —
71 =1y + ¢'sky g = YV

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m

PK, Ry =g" R,

D ek ——
3 71 = 1y + csky _

¢' = H(PK,R',m) 1

Question: Can we build a real-world (efficient)
deterministic threshold signature?

Clarify the Tradeoff Between Efficiency
and Security Assumptions for Signing

&

Multi-sigs

Threshold

Scheme

Assumptions

Signing

Rounds
MuSig [mPsw18, BDN18]
SimpleMuSig [BDN18, CKM21] DL+ROM 3
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM)
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Sparkle [ckm23] DL+ROM
FROST [KG20, BCKMTZ22] OMDL +ROM)

FROST2 [ckm21]

. Signing
Scheme Assumptions Rounds
I\/I.uS|g [I\/IPSV\./18, BDN18] 31 +ROM ;
- SimpleMuSig [BDN18, CKM21]
Multi-sigs
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM)
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Threshold i;ect)rgli [CKM23] DL+ROM
[KG20, BCKMTZ22]
FROST?2 [ckm21] OMDL+ROM 2

Question: Can we prove that two-round, efficient
multi-party Schnorr requires stronger assumptions?

Investigate the Tradeoff Between
Efficiency and Security Assumptions
for Key Generation

&

Distributed Key Generation

O

Secret Key

? Secret Key Secret Key Share 3

Share 1 Share 2

?Public Key

Distributed Key Generation

O

l > e
——— ————
+-—> A——————————————
? Secret Key Secret Key SeSCl:et Key
Share 1 Share 2 are 3

No single party knows the
corresponding secret key!

Public Key

Proving the security of DKGs

Proving the security of DKGs

 Two options:

Proving the security of DKGs

- Two options:

+ Prove security of the DKG in the context of a proof for unforgeability for a
threshold signature scheme

Proving the security of DKGs

- Two options:

+ Prove security of the DKG in the context of a proof for unforgeability for a
threshold signature scheme

+ Prove the security of the DKG independently, i.e, via a proof of composability

Composabillity of Distributed Key Generation

Target KeyGen
(Single-Party) DKG

(3K, PK) (SK, PK)

\/

Schemes that are
secure when the target
KeyGen is used.

Composabillity of Distributed Key Generation

Target KeyGen
(Single-Party) DKG

(3K, PK) (SK, PK)

\/

Schemes that are
secure when the target
KeyGen is used.

But where the
secret key Is secret
shared among all
parties.

Distributed Key Generation

3-Round (optimistically), 2-Round (total)
Composable Proven for FROST
GJKR-DKG [GJKR99] PedPop [KG20,
Storm [KGS23] BCKMTZ22]
DL, CDH AGM
standard stronger

assumption assumption

Distributed Key Generation

3-Round (optimistically), 2-Round (total)
Composable Proven for FROST
GJKR-DKG [GJKR99] PedPop [KG20,
Storm [KGS23] BCKMTZ22]
DL, CDH AGM
standard stronger
assumption assumption

Question: Do two-round, efficient and composable DKGs exist?

lakeaways

lakeaways

* Schnorr multi-party signatures are being used in practice today!

lakeaways

* Schnorr multi-party signatures are being used in practice today!
* Many questions and challenges remain, to improving their usability and security.

lakeaways

* Schnorr multi-party signatures are being used in practice today!
* Many questions and challenges remain, to improving their usability and security.

* We would love to collaborate with anyone interested in tackling these problems or
using these schemes, so please come talk to us!

Takeaways

* Schnorr multi-party signatures are being used in practice today!
* Many questions and challenges remain, to improving their usability and security.

* We would love to collaborate with anyone interested in tackling these problems or
using these schemes, so please come talk to us!

* (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us
know if you would like to join forces.

Takeaways

* Schnorr multi-party signatures are being used in practice today!
* Many questions and challenges remain, to improving their usability and security.

* We would love to collaborate with anyone interested in tackling these problems or
using these schemes, so please come talk to us!

* (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us
know if you would like to join forces.

Thank you!

