
From Theory to Practice to Theory:
Lessons Learned in Multi-Party
Schnorr Signatures
Elizabeth Crites Chelsea Komlo Tim Ruffing

Mar. 29, 2023

University of Edinburgh University of Waterloo

Zcash Foundation, Dfns

Blockstream

Why Multi-Party Schnorr Signatures? Why now?

“Efficient Identification
and Signatures

for Smart Cards,”
Schnorr, 1990.

Patent on Schnorr
signatures, filed 1991.

Patent on Schnorr
signatures, expired 2008.

NIST initial draft
call for threshold
signatures, 2023.

NIST standardizes
single-party

EdDSA, 2022.

Bitcoin moves
to Schnorr

(BIP340), 2021.

2-Round
Multi-Party

Schnorr
(MuSig2, DWMS,

FROST), 2020.

FROST CFRG
draft, 2021.

FROST2, Improved
proof for

FROST, 2021.

3-Round
Multi-Party

Schnorr
(MuSig), 2018.

Multi-Party Schnorr
(Stinson & Strobl), 2001.

(Single-Party) Schnorr Signature Scheme

σ = (R, z)

To generate a key pair:

PK ← gsk

[Sch90]

(Single-Party) Schnorr Signature Scheme

σ = (R, z)

To sign a message :

m
R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

To generate a key pair:

PK ← gsk

[Sch90]

(Single-Party) Schnorr Signature Scheme

σ = (R, z)

To sign a message :

m
R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

To generate a key pair:

PK ← gsk

Verify:

c ← H(PK, m, R)

R ⋅ PKc = gz

[Sch90]

(2,3) Example

Public Key

What are Threshold Signatures? [D87, DF89]

• -out-of-

• trusted key generation
or DKG to produce

t n

PK

(3,3) Example

Public Key

What are Multi-Signatures? [IN83, BN06]

• -out-of-

• key aggregation to
produce

• signers can be
spontaneous

n n

PK

n

z ← r + c ⋅ sk

How to share ? sk
How to share ? r

Multi-Party Schnorr Signatures

sig = (R, z)

What do we want?
• output signature that verifies like standard Schnorr signature

• public key looks like standard Schnorr signature public key

• few (2-3) rounds

• Stinson & Strobl 2001 uses DKG for signing

• reasonable security assumptions

• concurrent security

One-More Discrete Log (OMDL):

- stronger assumption

+ partially non-interactive schemes

Multi-sigs

Threshold

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr

DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

One-More Discrete Log (OMDL):

- stronger assumption

+ partially non-interactive schemes
All are concurrently secure

Multi-sigs

Threshold

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr

DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

	 BLLOR21]

sk2

Session 1 Session k
sk1

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

	 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

	 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

	 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Can forge!

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

	 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Can forge!

Affected:

• multi-signatures

• threshold signatures

• blind signatures

Solution: Force adversary to
commit to its nonces…

MuSig2 / SpeedyMuSig / FROST/2

Key Generation:

(ski, PKi), PK

Combine / Verify:

MuSig2 / SpeedyMuSig / FROST/2

Key Generation:

(ski, PKi), PK

Ri, Si

Round 1: Output Ri ← gri, Si ← gsi

Combine / Verify:

MuSig2 / SpeedyMuSig / FROST/2

Key Generation:

(ski, PKi), PK

Output

a ← H′￼(PK, m, {Ri, Si}n
i=1)

R = Πn
i=1 RiSa

i
c ← H(PK, m, R)

zi ← ri + asi + cski

Round 2:

zi

Ri, Si

Round 1: Output Ri ← gri, Si ← gsi

Combine / Verify:

MuSig2 / SpeedyMuSig / FROST/2

Key Generation:

(ski, PKi), PK

z = Σn
i=1 zi

sig = (R, z)
c ← H(PK, m, R)

R ⋅ PKc = gz

Output

a ← H′￼(PK, m, {Ri, Si}n
i=1)

R = Πn
i=1 RiSa

i
c ← H(PK, m, R)

zi ← ri + asi + cski

Round 2:

zi

Ri, Si

Round 1: Output Ri ← gri, Si ← gsi

Combine / Verify:

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3

sk3sk1
sk2,
state

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

• Adaptive security of Sparkle [CKM23],
FROST forthcoming

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3

sk3sk1
sk2,
state

From Theory to Practice: 
A Hitchhiker's Guide

Unforgeability: 
Attacker cannot forge signatures.

Liveness: 
System can always create signatures.

Multi-Signatures vs. Threshold Signatures

Multi-Signatures do not Guarantee Liveness

(3,3) Example

Multi-Signatures do not Guarantee Liveness

(3,3) Example

• If only one signer is unavailable, 
signing is not possible.

Multi-Signatures do not Guarantee Liveness

(3,3) Example

• If only one signer is unavailable, 
signing is not possible.

• Needs to be handled on a 
different layer of the system.

Multi-Signatures do not Guarantee Liveness

(3,3) Example

• If only one signer is unavailable, 
signing is not possible.

• Needs to be handled on a 
different layer of the system.

• Possible to use non-interactive
key aggregation instead of DKG.

DKGs can be Cumbersome

DKGs can be Cumbersome
• Distributed Key Generation (DKG)

DKGs can be Cumbersome
• Distributed Key Generation (DKG)

• Major pain point: DKGs require some kind of broadcast channel

DKGs can be Cumbersome
• Distributed Key Generation (DKG)

• Major pain point: DKGs require some kind of broadcast channel

• Protocol descriptions often just assume that all communication takes place
over reliable broadcast (= consensus/BFT)

DKGs can be Cumbersome
• Distributed Key Generation (DKG)

• Major pain point: DKGs require some kind of broadcast channel

• Protocol descriptions often just assume that all communication takes place
over reliable broadcast (= consensus/BFT)

• Implementers often fail to understand this, or simply ignore it

How to Choose (n, t) 
for Threshold Signatures ?

How to Choose (n, t) 
for Threshold Signatures ?

FROST supports any choice,
but that just makes the problem harder!

Honest Majority (Classic)
n = 5

t = 3

Maximum number of tolerable bad signers for
unforgeability:

t - 1 = 2
liveness:
n - t = 2

Honest Majority (Classic)
n = 5

t = 3

Maximum number of tolerable bad signers for
unforgeability:

t - 1 = 2
liveness:
n - t = 2

may be required in consensus
systems anyway

Honest Minority
n = 5

t = 4

Maximum number of tolerable bad signers for
unforgeability:

t - 1 = 3
liveness:
n - t = 1

Honest Minority
n = 5

t = 4

Maximum number of tolerable bad signers for

no progress with 2 bad signers 
but also no forgery

unforgeability:
t - 1 = 3

liveness:
n - t = 1

Full Threshold
n = 5

t = 5

Maximum number of tolerable bad signers for
unforgeability:

t - 1 = 4
liveness:
n - t = 0

Full Threshold
n = 5

t = 5

Maximum number of tolerable bad signers for
unforgeability:

t - 1 = 4
liveness:
n - t = 0multi-signatures possible:

(non-interactive 
key aggregation, no DKG)

Robustness: the protocol succeeds so long
as at least t players participate honestly. 

 
(required for liveness!)

FROST and Robustness

• FROST is not robust. z1

Combine

(2,3) Example

FROST and Robustness

• FROST is not robust.
• If even one FROST signer issues garbage,

the resulting signature is garbage

z1

Combine

(2,3) Example

FROST and Robustness

• FROST is not robust.
• If even one FROST signer issues garbage,

the resulting signature is garbage
• Then the protocol must be re-run with a

different subset of signers.

z1

Combine

(2,3) Example

ROAST: Making FROST Robust

ROAST: Making FROST Robust

ROAST: Making FROST Robust

• ROAST is a wrapper picks subsets in a clever way

• At most FROST runs necessary

• Resulting protocol is robust and asynchronous (no timeouts)

n − t + 1

Standardization and
Deployment

Standardization

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/

Standardization

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst

Standardization

https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

Standardization

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

FROST and MuSig2 in Practice, Today
FROST MuSig2

From Practice to Theory:
What open problems exist?

Efficient Deterministic Signatures

(Single-Party) EdDSA Signature Scheme

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

(Single-Party) EdDSA Signature Scheme

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

(Single-Party) EdDSA Signature Scheme

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

(Single-Party) EdDSA Signature Scheme

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

Helps prevent
issues arising from
bad randomness.

(Single-Party) EdDSA Signature Scheme

σ = (R, z)

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

Helps prevent
issues arising from
bad randomness.

(Single-Party) EdDSA Signature Scheme

σ = (R, z)

To verify :

output accept/reject

(PK, σ, m)
c ← H(PK, m, R)

R ⋅ PKc ?= gz

To sign a message :

m
r ← H(m, sk) ; R ← gr

c ← H(PK, m, R)
z ← r + csk

To generate a key pair:

sk $ 𝔽 ; PK ← gsk

Helps prevent
issues arising from
bad randomness.

Naively applying EdDSA-style
determinism to randomized

multi-party Schnorr schemes
is not secure!

Naively applying EdDSA-style
determinism to randomized

multi-party Schnorr schemes
is not secure!

Deterministic multi-party Schnorr schemes exist,

but are performance-intensive. [NRSW20, GKMN21]

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

r1 ← H1(m, sk1)

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

r1 ← H1(m, sk1)

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m
R1 = gr1

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m
R1 = gr1

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m
R1 = gr1

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m
R1 = gr1 r2 ← H1(m, sk2)

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m
R1 = gr1 r2 ← H1(m, sk2)

R2 = gr2

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1 r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1 r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)

r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

mr1 ← H1(m, sk1)

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

mr1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

r1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

r1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

r1 ← H1(m, sk1)
R1 = gr1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

Honest party cannot detect
that the corrupt party has

deviated from the protocol!

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1 sk =

zv − z′￼v

c − c′￼

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1 sk =

zv − z′￼v

c − c′￼

r1 ← H1(m, sk1)

R1

z1

PK2

PK1

Key Recovery Attack on Deterministic (Insecure) Multi-Party Signature

Honest

Corrupt

m

R2

R1 = gr1

R = R1R2

c = H(PK, R, m)
z1 = r1 + csk1

r2 ← H1(m, sk2)
R2 = gr2

m
R1

r′￼2
$ 𝔽

R′￼2 = gr′￼2

R′￼2

z′￼1

r1 ← H1(m, sk1)
R1 = gr1

R′￼ = R1R′￼2

c′￼ = H(PK, R′￼, m)
z′￼1 = r1 + c′￼sk1 sk =

zv − z′￼v

c − c′￼
Question: Can we build a real-world (efficient)

deterministic threshold signature?

Clarify the Tradeoff Between Efficiency
and Security Assumptions for Signing

Multi-sigs

Threshold

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr

DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

Multi-sigs

Threshold

MuSig [MPSW18, BDN18]

SimpleMuSig [BDN18, CKM21]
DL+ROM

Scheme Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21]

Schnorr

DL+ROM

Signing
Rounds

3

OMDL+ROM
MuSig2 [NRS21]

DWMS [AB21]

SpeedyMuSig [CKM21]
2

2

3Lindell22
Sparkle [CKM23]

OMDL+ROM

Question: Can we prove that two-round, efficient
multi-party Schnorr requires stronger assumptions?

Investigate the Tradeoff Between
Efficiency and Security Assumptions

for Key Generation

Distributed Key Generation

Public Key

Secret Key

Share 1

Secret Key

Share 2

Secret Key

Share 3

Distributed Key Generation

Public Key

Secret Key

Share 1

Secret Key

Share 2

Secret Key

Share 3

No single party knows the

corresponding secret key!

Proving the security of DKGs

Proving the security of DKGs
• Two options:

Proving the security of DKGs
• Two options:

• Prove security of the DKG in the context of a proof for unforgeability for a
threshold signature scheme

Proving the security of DKGs
• Two options:

• Prove security of the DKG in the context of a proof for unforgeability for a
threshold signature scheme

• Prove the security of the DKG independently, i.e, via a proof of composability

Composability of Distributed Key Generation
Target KeyGen
(Single-Party) DKG

(SK, PK) (SK, PK)

Schemes that are
secure when the target

KeyGen is used.

Composability of Distributed Key Generation
Target KeyGen
(Single-Party) DKG

(SK, PK) (SK, PK)

But where the
secret key is secret
shared among all

parties.

Schemes that are
secure when the target

KeyGen is used.

Distributed Key Generation

GJKR-DKG [GJKR99]
Storm [KGS23]

PedPop [KG20,
BCKMTZ22]

DL, CDH AGM

2-Round (total)

Proven for FROST

3-Round (optimistically),
Composable

stronger

assumption

standard

assumption

Distributed Key Generation

GJKR-DKG [GJKR99]
Storm [KGS23]

PedPop [KG20,
BCKMTZ22]

DL, CDH AGM

2-Round (total)

Proven for FROST

3-Round (optimistically),
Composable

stronger

assumption

standard

assumption

Question: Do two-round, efficient and composable DKGs exist?

Takeaways

Takeaways

• Schnorr multi-party signatures are being used in practice today!

Takeaways

• Schnorr multi-party signatures are being used in practice today!
• Many questions and challenges remain, to improving their usability and security.

Takeaways

• Schnorr multi-party signatures are being used in practice today!
• Many questions and challenges remain, to improving their usability and security.
• We would love to collaborate with anyone interested in tackling these problems or

using these schemes, so please come talk to us!

Takeaways

• Schnorr multi-party signatures are being used in practice today!
• Many questions and challenges remain, to improving their usability and security.
• We would love to collaborate with anyone interested in tackling these problems or

using these schemes, so please come talk to us!
• (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us

know if you would like to join forces.

Takeaways

• Schnorr multi-party signatures are being used in practice today!
• Many questions and challenges remain, to improving their usability and security.
• We would love to collaborate with anyone interested in tackling these problems or

using these schemes, so please come talk to us!
• (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us

know if you would like to join forces.

Thank you!

