From Theory to Practice to Theory:
Lessons Learned in Multi-Party
Schnorr Signatures




Why Multi-Party Schnorr Signatures”? Why now?

2-Round
“Efficient Identification 3-Round Multi-Party o
and Signatures Multi-Party Schnorr Bitcoin moves  NIST initial draft
for Smart Cards,” Multi-Party Schnorr Schnorr (MuSig2, DWMS, to Schnorr call for threshold
Schnorr, 1990.  (Stinson & Strobl), 2001. (MuSig), 2018.  FROST), 2020. (BIP340), 2021.  signatures, 2023.
Patent on Schnorr Patent on Schnorr FROSTZ, Improved FROST CFRG NIST standardizes
signatures, filed 1991. signatures, expired 2008. proof for draft, 2021. single-party

FROST, 2021. EdDSA, 2022.
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(Single-Party) Schnorr Signature Scheme  (Schoo]

6 = (R.2) n
-_——
To generate a key pair: Verity:
PK <« g% ¢ « H(PK,m, R)

R-PK‘=go*
To sign a message 1.
R« g
c — H(PK,m,R)
z—r+c-sk



What are Threshold Signatures? [ps7, brsg]

?Public Key

e [-Out-of-n

e frusted key generation
or DKG to produce PK

(2,3) Example



What are Multi-Signatures? [inss, snos;

?Public Key

® 71-OUt-0Of-n

e Key aggregation to
oroduce PK

* 71 SIgners can be
sSpontaneous

(3,3) Example



Multi-Party Schnorr Signatures

How to share sk ?

How to share r ? \ /

7—1r+c-sk

Sig = (RQ



What do we want”?

- output signature that verifies like standard Schnorr signature

* public key looks like standard Schnorr signature public key
- few (2-3) rounds

o Stinson & Strobl 2001 uses DKG for signing
* reasonable security assumptions

» concurrent security
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Lindell22 Schnorr 3
Threshold i;zg-i [CKM23] DL+ROM
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One-More Discrete Log (OMDL):

All are concurrently secure \/ - stronger assumption
+ partially non-interactive schemes




Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]
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Concurrent Security: ROS Attacks [NKDMo3, DEFKLNS19
BLLOR21]

Session 1 Session k

Affecteq:
 multi-signatures
e threshold signatures

e pblind signatures

Sk2 Solution: Force adversary to
commit to ItS nonces...
' Can forge!
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t1

R.S.

1> 1

£

Key Generation: Combine / Verify:
(sk, PK.), PK

Round 1: Output R, < g'i, §. « g"
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MuSig2 / SpeedyMuSig / FROST/2

t1

17

<

R.S.

l

£

Key Generaton: — > Combine/ Verify:

(sk;, PK)), PK

Round 1: Output R, < g'i, §. « g"
Round 2: a <« H'(PK,m,{R;,S;}'_)
R =1I"_, RS/
¢ <« H(PK,m, R)
Output z; < r; + as; + CSki

Z=21 g
sig = (R, z)
¢ «— H(PK,m,R)
R-PK°=g* o
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Static Corruption

n A

sk sk, sky
Signing
Rounds

Adaptive Corruption

n A

Skl Skz Sk3
Signing
Rounds

n v

ki sk, sk
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Adaptive Security

Static Corruption

n A

sk sk, sky
Signing
Rounds

* Adaptive security of Sparkle [CKMZ23],
FROST forthcoming

Adaptive Corruption

n A

Skl Skz Sk3
Signing
Rounds

1 & @

sk sk, sk

state
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From Theory to Practice:
A Hitchhiker's Guide

s




Unforgeability:
Attacker cannot forge signatures.

Liveness:
System can always create signatures.



Multi-Signatures vs. Threshold Signatures

=
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Multi-Signatures do not Guarantee Liveness

(3,3) Example

® |f only one signer is unavailable,
signing Is Not possible.
® Needs to be handled on a

different layer of the system.
® Possible to use non-interactive

key aggregation instead of DKG.
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DKGs can be Cumbersome

» Distributed Key Generation (DKG)
+ Major pain point: DKGs require some kind of broadcast channel

* Protocol descriptions often just assume that all communication takes place
over reliable broadcast (= consensus/BFT)

* |Implementers often fail to understand this, or simply ignore it



How to Choose (n, t)
for Threshold Signatures ?




How to Choose (n, t)
for Threshold Signatures ?

FROST supports any choice,
but that just makes the problem harder!



Honest Majority (Classic)
=5
O 9 } 7
3

t =
Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=2 n-t=2

n




Honest Majority (Classic)

e O ) °

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=2 n-t=2

may be required In consensus
systems anyway



Honest Minority
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Honest Minority

n=>5
A B el
t=4

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=3 nh-t=1

no progress with 2 bad signers
but also no forgery



Full Threshold

n=95

9§ "~

t=95

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=4 n-t=0



Full Threshold

n=25
OO 99 -
t=95

Maximum number of tolerable bad signers for

unforgeability: liveness:
t-1=4 multi-signatures possible: n-t=0
(non-interactive
key aggregation, no DKG)



Robustness: the protocol succeeds so long
as at least t players participate honestly.

(required for liveness!)



FROST and Robustness

Combine

* FROST is not robust. Q — Zq

+ |— i

o = N
O— | O

(2,3) Example



FROST and Robustness

Combine

(| @

+ |— (I

o = N
O— | O

* FROST is not robust.

* If even one FROST signer issues garbage,
the resulting signature is garbage

it

(2,3) Example



FROST and Robustness

Combine

* FROST is not robust. n — {1

* If even one FROST signer issues garbage,
the resulting signature is garbage

==
+ [— I

* Then the protocol must be re-run with a
different subset of signers. ~=
¥—| 0

(2,3) Example
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ROAST: Making FROST Robust

* ROAST is a wrapper picks subsets in a clever way

* At most n — t + 1 FROST runs necessary
* Resulting protocol is robust and asynchronous (no timeouts)



Standardization and
Deployment




Standardization

CFRG D. Connolly
Internet-Draft Zcash Foundation
Intended status: Informational C. Komlo
Expires: 28 July 2023 University of Waterloo, Zcash Foundation
I. Goldberg

University of Waterloo

C. A. Wood

Cloudflare

24 January 2023

Two-Round Threshold Schnorr Signatures with FROST
draftt-irtf-cfrg-frost-12

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/



https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/

Standardization

[IP: 312
Title: FROST for Spend Authorization Signatures
Owners: Conrado Gouvea <conrado@zfnd.org>
Chelsea Komlo <ckomlo@uwaterloo.ca>
Deirdre Connolly <deirdre@zfnd.org>
Status: Draft
Category: Wallet
Created: 20622-08-dd
| icense: MIT
Discussions-To: <https://github.com/zcash/zips/issues/382>
Pull-Request: <https://github.com/zcash/zips/pull/662>

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst



https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst

Standardization

BIP: 327
Title: MuSig2 for BIP348-compatible Multi-Signatures
Author: Jonas Nick <jonasd.nick@gmail.com>
Tim Ruffing <crypto@timruffing.de>
Elliott Jin <elliott.jin@gmail.com>
Status: Draft
License: BSD-3-Clause
Type: Informational

Created: 20622-83-22

https://qgithub.com/bitcoin/bips/blob/master/bip-0327.mediawiki



https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

Standardization NIST | agmesr

NISTIR 8214C (Draft)
NIST First Call for Multi-Party Threshold Schemes

Date Published: January 25, 2023

Comments Due: April 10, 2023
Email Comments to: nistir-8214C-comments@nist.gov

Author(s)

Luis T. A. N. Branddo (Strativia), Rene Peralta (NIST)

https://csrc.nist.gov/publications/detail/nistir/8214c/draft



https://csrc.nist.gov/publications/detail/nistir/8214c/draft

FROST and MuSig2 in Practice, Today

MuSig2

N

| BlockstreamResearch / secp256k1-zkp

2 CHAINFLIP

serai-dex/seral @ LLFourn/secp256kfun

S

bifcoin/bips @ . IﬂpUt-OUtpUt-hk/mUSigz

Add BIP MuSig2

A9 @ 2 w 94 % 18
Contributors Used by Stars Forks

BlockstreamResearch/secp256k1-zkp

#223 musig: Update to

BIP v1.0.0-rc.4 (Check

pubnonce in NonceGe... muun

Self-custodial wallet for
bitcoin and lightning.

EaEmEEYs jesseposner/

nvy WNEF FROST-BIP340

BIP340 compatible implementation of

Flexible Round-Optimized Schnorr -
) 0 comments : s | es +15-7EEEN

Threshold Signatures (FROST). This work

f"‘ CR Yp To SAT is made possible with the support of
- oy ATK

Brink.
@ 2 % 20 Y 3
Issues Stars

Forks

@ real-or-random « March 3,2023 -O- 1 commit

T IN BPAaC
A 2
Contributor:




From Practice to Theory:
What open problems exist?




Efficient Deterministic Signatures

&
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(Single-Party) EADSA Signature Scheme

£

To generate a key pair:
Sk<$—1-; PK(—gSk

To sign a message m:
r«— H(m,sk)|; R« g’
Helps prevent

c—H (P K , 11, R) Issues arising from
7—r+c ol bad randomness.




(Single-Party) EADSA Signature Scheme

)

c=(R,2)

)

Tokgeﬁgne_ra}telD e}{ key paSLr: To verify (PK, o, m):
sk — [F ; — g ¢ — H(PK,m, R)

(?

R - PK¢ = g7

To sign a message m: output accept/reject
r — H(m,sk)|; R« g’

Helps prevent
c — H (P K, m, R) issues arising from

7—r+c ol bad randomness.




Naively applying EADSA-style
determinism to randomized
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IS nhot secure!




Naively applying EADSA-style
determinism to randomized
multi-party Schnorr schemes
IS nhot secure!

Deterministic multi-party Schnorr schemes exist,
but are performance-intensive. [NRSW20, GKMN21]
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1132 R,
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Honest ry < Hy(m, sky) m
¥ --——

PK, Ry=g" R,
—————— ——————————————
A ocem

Zl=l”1+CSk1 e e
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Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m

¥ —

PK, Ry=g" R,
—>
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Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < H(m,sky) m
R, = gh
PK; 1

Honest party cannot detect
c = HPK,R,m) that the corrupt party has
L .
7, = r; + csky deviated from the protocol!

r, < H,(m, sk;) — 1
R =g" —»Rl
R = R,R, K
¢’ = H(PK,R'. m) g ,

71 = 1y + C'sky
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Key Recovery Attack on Deterministic (Insecure) Multi-Party Signaturg Corrupt

Honest ry < Hy(m, sky) m

PK, Ry =g" R,

D ek ——
3 71 = 1y + csky _

¢' = H(PK,R',m) 1

Question: Can we build a real-world (efficient)
deterministic threshold signature?




Clarify the Tradeoff Between Efficiency
and Security Assumptions for Signing

&



Multi-sigs

Threshold

Scheme

Assumptions

Signing

Rounds
MuSig [mPsw18, BDN18]
SimpleMuSig [BDN18, CKM21] DL+ROM 3
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM )
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Sparkle [ckm23] DL+ROM
FROST [KG20, BCKMTZ22] OMDL +ROM )

FROST2 [ckm21]




. Signing
Scheme Assumptions Rounds
I\/I.uS|g [I\/IPSV\./18, BDN18] 31 +ROM ;
- SimpleMuSig [BDN18, CKM21]
Multi-sigs
MuSig2 [NRs21]
DWMS [aB21] OMDL+ROM )
SpeedyMuSig [Ckm21]
Lindell22 Schnorr 3
Threshold i;ect)rgli [CKM23] DL+ROM
[KG20, BCKMTZ22]
FROST?2 [ckm21] OMDL+ROM 2

Question: Can we prove that two-round, efficient
multi-party Schnorr requires stronger assumptions?



Investigate the Tradeoff Between
Efficiency and Security Assumptions
for Key Generation

&



Distributed Key Generation

O

Secret Key

? Secret Key Secret Key Share 3

Share 1 Share 2

?Public Key




Distributed Key Generation

O

l > e
——— ————
+-—> A——————————————
? Secret Key Secret Key SeSCl:et Key
Share 1 Share 2 are 3

No single party knows the
corresponding secret key!

Public Key
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Proving the security of DKGs

- Two options:

+ Prove security of the DKG in the context of a proof for unforgeability for a
threshold signature scheme

+ Prove the security of the DKG independently, i.e, via a proof of composability
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Target KeyGen
(Single-Party) DKG

(3K, PK) (SK, PK)

\/

Schemes that are
secure when the target
KeyGen is used.

But where the
secret key Is secret
shared among all
parties.
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Distributed Key Generation

3-Round (optimistically), 2-Round (total)
Composable Proven for FROST
GJKR-DKG [GJKR99] PedPop [KG20,
Storm [KGS23] BCKMTZ22]
DL, CDH AGM
standard stronger
assumption assumption

Question: Do two-round, efficient and composable DKGs exist?
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Takeaways

* Schnorr multi-party signatures are being used in practice today!
* Many questions and challenges remain, to improving their usability and security.

* We would love to collaborate with anyone interested in tackling these problems or
using these schemes, so please come talk to us!

* (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us
know if you would like to join forces.

Thank you!



