From Theory to Practice to Theory: Lessons Learned in Multi-Party Schnorr Signatures

Elizabeth Crites

University of Edinburgh

Chelsea Komlo

University of Waterloo Zcash Foundation, Dfns

Tim Ruffing

Blockstream

Why Multi-Party Schnorr Signatures? Why now?

(Single-Party) Schnorr Signature Scheme

[Sch90]

$$\sigma = (R, z)$$

To generate a key pair:

$$PK \leftarrow g^{sk}$$

(Single-Party) Schnorr Signature Scheme

[Sch90]

$$\sigma = (R, z)$$

To generate a key pair:

$$PK \leftarrow g^{sk}$$

To sign a message *m*:

$$R \leftarrow g^{r}$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + c \cdot sk$$

(Single-Party) Schnorr Signature Scheme

[Sch90]

$$\sigma = (R, z)$$

To generate a key pair:

$$PK \leftarrow g^{sk}$$

Verify:

$$c \leftarrow H(PK, m, R)$$

$$R \cdot PK^c = g^z \checkmark$$

To sign a message *m*:

$$R \leftarrow g^{r}$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + c \cdot sk$$

What are Threshold Signatures? [D87, DF89]

- *t*-out-of-*n*
- trusted key generation
 or DKG to produce *PK*

(2,3) Example

What are Multi-Signatures? [IN83, BN06]

- *n*-out-of-*n*
- key aggregation to produce *PK*
- *n* signers can be spontaneous

Multi-Party Schnorr Signatures

$$sig = (R, Z)$$

What do we want?

- output signature that verifies like standard Schnorr signature
 - public key looks like standard Schnorr signature public key
- few (2-3) rounds
 - Stinson & Strobl 2001 uses DKG for signing
- reasonable security assumptions
- concurrent security

	Scheme	Assumptions	Signing Rounds
Multi-sigs	MuSig [MPSW18, BDN18] SimpleMuSig [BDN18, CKM21]	DL+ROM	3
	MuSig2 [NRS21] DWMS [AB21] SpeedyMuSig [CKM21]	OMDL+ROM	2
Threshold	Lindell22 Sparkle [CKM23]	Schnorr DL+ROM	3
	FROST [KG20, BCKMTZ22] FROST2 [CKM21]	OMDL+ROM	2

One-More Discrete Log (OMDL):

stronger assumption

+ partially non-interactive schemes

	Scheme	Assumptions	Signing Rounds
Multi-sigs	MuSig [MPSW18, BDN18] SimpleMuSig [BDN18, CKM21]	DL+ROM	3
	MuSig2 [NRS21] DWMS [AB21] SpeedyMuSig [CKM21]	OMDL+ROM	2
Threshold	Lindell22 Sparkle [CKM23]	Schnorr DL+ROM	3
	FROST [KG20, BCKMTZ22] FROST2 [CKM21]	OMDL+ROM	2

All are concurrently secure

One-More Discrete Log (OMDL):

- stronger assumption
- + partially non-interactive schemes

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

BLLOR21]

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,

BLLOR21]

Session 1 Session k sk_1

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19, BLLOR21]

Session 1 Session k sk_1 $R_1^{(k)}$

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19, BLLOR21]

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19, BLLOR21]

Affected:

- multi-signatures
- threshold signatures
- blind signatures

Solution: Force adversary to commit to its nonces...

Key Generation:

 $(sk_i, PK_i), PK$

Combine / Verify:

Key Generation:

 $(sk_i, PK_i), PK$

Combine / Verify:

Round 1: Output $R_i \leftarrow g^{r_i}$, $S_i \leftarrow g^{s_i}$

Combine / Verify:

Key Generation:

$$(sk_i, PK_i), PK$$

Round 1: Output $R_i \leftarrow g^{r_i}$, $S_i \leftarrow g^{s_i}$

Round 2: $a \leftarrow H'(PK, m, \{R_i, S_i\}_{i=1}^n)$

$$R = \prod_{i=1}^{n} R_i S_i^a$$

$$c \leftarrow H(PK, m, R)$$

Output $z_i \leftarrow r_i + as_i + csk_i$

Key Generation:

$$(sk_i, PK_i), PK$$

Round 1: Output $R_i \leftarrow g^{r_i}$, $S_i \leftarrow g^{s_i}$

Round 2: $a \leftarrow H'(PK, m, \{R_i, S_i\}_{i=1}^n)$

$$R = \prod_{i=1}^{n} R_i S_i^a$$

$$c \leftarrow H(PK, m, R)$$

Output $z_i \leftarrow r_i + as_i + csk_i$

Combine / Verify:

$$z = \sum_{i=1}^{n} z_i$$

$$sig = (R, z)$$

$$c \leftarrow H(PK, m, R)$$

$$R \cdot PK^c = g^z \checkmark$$

Static Corruption

Static Corruption

Adaptive Corruption

Static Corruption

 sk_2

Adaptive Corruption

 sk_1

 sk_2

 sk_3

Signing Rounds

 sk_1

 sk_2 ,

 sk_3

state

Static Corruption

 Adaptive security of Sparkle [CKM23], FROST forthcoming

Adaptive Corruption

MuSig2: Simple Two-Round Schnorr Multi-Signatures

Jonas Nick¹, Tim Ruffing¹, and Yannick Seurin²

How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures

Elizabeth Crites¹, Chelsea Komlo², and Mary Maller³

Better than Advertised Security for Non-interactive Threshold Signatures

Mihir Bellare¹, Elizabeth Crites², Chelsea Komlo³, Mary Maller⁴, Stefano Tessaro⁵, and Chenzhi Zhu⁵(⊠)

Fully Adaptive Schnorr Threshold Signatures

Elizabeth Crites¹, Chelsea Komlo², and Mary Maller³

FROST: Flexible Round-Optimized Schnorr Threshold Signatures

Chelsea Komlo
University of Waterloo, Zcash Foundation
ckomlo@uwaterloo.ca

Ian Goldberg
University of Waterloo
iang@uwaterloo.ca

ROAST: Robust Asynchronous Schnorr Threshold Signatures

Tim Ruffing
Blockstream
crypto@timruffing.de

Viktoria Ronge Friedrich-Alexander-Universität Erlangen-Nürnberg ronge@cs.fau.de Elliott Jin Blockstream eyj@blockstream.com

Jonas Schneider-Bensch CISPA Helmholtz Center for Information Security jonas.schneider-bensch@cispa.de Dominique Schröder
Friedrich-Alexander-Universität
Erlangen-Nürnberg
dominique.schroeder@fau.de

A Formal Treatment of Distributed Key Generation, and New Constructions

Chelsea Komlo, Ian Goldberg, Douglas Stebila

From Theory to Practice: A Hitchhiker's Guide

Unforgeability:

Attacker cannot forge signatures.

Liveness:

System can always create signatures.

Multi-Signatures vs. Threshold Signatures

 If only one signer is unavailable, signing is not possible.

- If only one signer is unavailable, signing is not possible.
- Needs to be handled on a different layer of the system.

- If only one signer is unavailable, signing is not possible.
- Needs to be handled on a different layer of the system.
- Possible to use non-interactive key aggregation instead of DKG.

Distributed Key Generation (DKG)

- Distributed Key Generation (DKG)
- Major pain point: DKGs require some kind of broadcast channel

- Distributed Key Generation (DKG)
- Major pain point: DKGs require some kind of broadcast channel
 - Protocol descriptions often just assume that all communication takes place over reliable broadcast (= consensus/BFT)

DKGs can be Cumbersome

- Distributed Key Generation (DKG)
- Major pain point: DKGs require some kind of broadcast channel
 - Protocol descriptions often just assume that all communication takes place over reliable broadcast (= consensus/BFT)
 - Implementers often fail to understand this, or simply ignore it

How to Choose (n, t) for Threshold Signatures?

How to Choose (n, t) for Threshold Signatures?

FROST supports any choice, but that just makes the problem harder!

Honest Majority (Classic)

Maximum number of tolerable bad signers for

unforgeability:

$$t - 1 = 2$$

liveness:

$$n - t = 2$$

Honest Majority (Classic)

$$n = 5$$

$$t = 3$$

Maximum number of tolerable bad signers for

unforgeability:

$$t - 1 = 2$$

liveness:

$$n - t = 2$$

may be required in consensus systems anyway

Honest Minority

$$n = 5$$

$$t = 4$$

Maximum number of tolerable bad signers for

unforgeability:

$$t - 1 = 3$$

liveness:

$$n - t = 1$$

Honest Minority

$$n = 5$$

$$t = 4$$

Maximum number of tolerable bad signers for

unforgeability:

$$t - 1 = 3$$

liveness:

$$n - t = 1$$

no progress with 2 bad signers but also no forgery

Full Threshold

$$n = 5$$

Maximum number of tolerable bad signers for

unforgeability:

liveness:

$$n - t = 0$$

Full Threshold

$$n = 5$$

Maximum number of tolerable bad signers for

unforgeability:

$$t - 1 = 4$$

multi-signatures possible: (non-interactive key aggregation, no DKG)

liveness:

$$n - t = 0$$

Robustness: the protocol succeeds so long as at least *t* players participate honestly.

(required for liveness!)

FROST and Robustness

• FROST is **not** robust.

(2,3) Example

FROST and Robustness

- FROST is **not** robust.
- If even one FROST signer issues garbage, the resulting signature is garbage

(2,3) Example

FROST and Robustness

- FROST is **not** robust.
- If even one FROST signer issues garbage, the resulting signature is garbage
- Then the protocol must be re-run with a different subset of signers.

(2,3) Example

ROAST: Making FROST Robust

ROAST: Making FROST Robust

ROAST: Making FROST Robust

- ROAST is a wrapper picks subsets in a clever way
- At most n t + 1 FROST runs necessary
- Resulting protocol is robust and asynchronous (no timeouts)

Standardization and Deployment

CFRG

D. Connolly

Internet-Draft Zcash Foundation

Intended status: Informational C. Komlo

Expires: 28 July 2023 University of Waterloo, Zcash Foundation

I. Goldberg

University of Waterloo

C. A. Wood

Cloudflare

24 January 2023

Two-Round Threshold Schnorr Signatures with FROST draft-irtf-cfrg-frost-12

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/


```
ZIP: 312
```

Title: FROST for Spend Authorization Signatures

Owners: Conrado Gouvea <conrado@zfnd.org>

Chelsea Komlo <ckomlo@uwaterloo.ca>

Deirdre Connolly <deirdre@zfnd.org>

Status: Draft

Category: Wallet

Created: 2022-08-dd

License: MIT

Discussions-To: https://github.com/zcash/zips/issues/382

Pull-Request: <https://github.com/zcash/zips/pull/662>

https://github.com/ZcashFoundation/zips/blob/zip-frost/zip-0312.rst


```
BIP: 327
```

Title: MuSig2 for BIP340-compatible Multi-Signatures

Author: Jonas Nick <jonasd.nick@gmail.com>

Tim Ruffing <crypto@timruffing.de>

Elliott Jin <elliott.jin@gmail.com>

Status: Draft

License: BSD-3-Clause

Type: Informational Created: 2022-03-22

https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

NISTIR 8214C (Draft)

NIST First Call for Multi-Party Threshold Schemes

Date Published: January 25, 2023

Comments Due: April 10, 2023

Email Comments to: <u>nistir-8214C-comments@nist.gov</u>

Author(s)

Luís T. A. N. Brandão (Strativia), Rene Peralta (NIST)

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

FROST and MuSig2 in Practice, Today

FROST MuSig2

From Practice to Theory: What open problems exist?

Efficient Deterministic Signatures

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To sign a message *m*:

$$r \leftarrow H(m, sk)$$
; $R \leftarrow g^r$
 $c \leftarrow H(PK, m, R)$
 $z \leftarrow r + csk$

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To sign a message
$$m$$
:
$$r \leftarrow H(m, sk); R \leftarrow g^{r}$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To sign a message m:

$$r \leftarrow H(m, sk)$$
; $R \leftarrow g^r$
 $c \leftarrow H(PK, m, R)$
 $z \leftarrow r + csk$

Helps prevent issues arising from bad randomness.

$$\sigma = (R, z)$$

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To sign a message m:

$$r \leftarrow H(m, sk); R \leftarrow g^{r}$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

Helps prevent issues arising from bad randomness.

$$\sigma = (R, z)$$

To generate a key pair:

$$sk \leftarrow \mathbb{F}$$
; $PK \leftarrow g^{sk}$

To sign a message m:

$$r \leftarrow H(m, sk); R \leftarrow g^r$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

Helps prevent issues arising from bad randomness.

To verify (PK, σ, m) : $c \leftarrow H(PK, m, R)$ $R \cdot PK^c \stackrel{?}{=} g^z$ output accept/reject

Naively applying EdDSA-style determinism to randomized multi-party Schnorr schemes is <u>not secure!</u>

Naively applying EdDSA-style determinism to randomized multi-party Schnorr schemes is <u>not secure!</u>

Deterministic multi-party Schnorr schemes exist, but are performance-intensive. [NRSW20, GKMN21]

Corrupt

 PK_2

 PK_1

m

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

m

 PK_1

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

m

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

 PK_1

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$r_2 \leftarrow H_1(m, sk_2)$$

Corrupt

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

PK1
$$R_1 = g^{r_1}$$

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$PK_1 \qquad \qquad R_1 = g^{r_1}$$

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$
$$z_1 = r_1 + csk_1$$

$$z_1 = r_1 + csk_1$$

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$
$$z_1 = r_1 + csk_1$$

$$z_1 = r_1 + csk$$

 R_1

 R_2

 z_1

 $r_2 \leftarrow H_1(m, sk_2)$ $R_2 = g^{r_2}$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

 z_1

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1$$
 R_2
 Z_1

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1$$
 R_2
 Z_1

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$
$$R_2 = g^{r_2}$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$
$$R_1 = g^{r_1}$$

$$R_1$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1$$
 R_2'

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R_1$$
 R_2'

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$R_1$$
 R_2'

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$R_1$$

$$R_2'$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

$$R_1$$

$$R_2'$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

$$R_1$$

$$R_2'$$

$$z_1'$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

$$R_1$$

$$R_2'$$

$$z_1'$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

est
$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z'_1 = r_1 + c'sk_1$$

Honest party cannot detect that the corrupt party has deviated from the protocol!

$$R_1$$
 R_2
 Z_1'

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

 z_1

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

m

 R_1

 $egin{array}{c|c} R_2' & & & \\ \hline z_1' & & & \\ \hline \end{array}$

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

 z_1

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

 R_1

 R_2'

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

$$sk = \frac{z_v - z_v'}{c - c'}$$

Corrupt

 PK_2

Honest

 PK_1

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

 R_1

 R_2

 z_1

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$z_1' = r_1 + c'sk_1$$

m

 R_1

 R_2'

$$r_2' \stackrel{\$}{\leftarrow} \mathbb{F}$$

$$R_2' = g^{r_2'}$$

$$sk = \frac{z_v - z_v'}{c - c'}$$

Corrupt

 PK_2

Honest

$$PK_1$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R = R_1 R_2$$

$$c = H(PK, R, m)$$

$$z_1 = r_1 + csk_1$$

$$R_1$$

$$R_2$$

$$z_1$$

$$r_2 \leftarrow H_1(m, sk_2)$$

$$R_2 = g^{r_2}$$

$$r_1 \leftarrow H_1(m, sk_1)$$

$$R_1 = g^{r_1}$$

$$R' = R_1 R_2'$$

$$c' = H(PK, R', m)$$

$$R_1$$

$$R_2'$$

$$z_1'$$

$$sk = \frac{z_v - z_v'}{c - c'}$$

Question: Can we build a real-world (efficient) deterministic threshold signature?

Clarify the Tradeoff Between Efficiency and Security Assumptions for Signing

	Scheme	Assumptions	Signing Rounds
Multi-sigs	MuSig [MPSW18, BDN18] SimpleMuSig [BDN18, CKM21]	DL+ROM	3
	MuSig2 [NRS21] DWMS [AB21] SpeedyMuSig [CKM21]	OMDL+ROM	2
Threshold	Lindell22 Sparkle [CKM23]	Schnorr DL+ROM	3
	FROST [KG20, BCKMTZ22] FROST2 [CKM21]	OMDL+ROM	2

	Scheme	Assumptions	Signing Rounds
Multi-sigs	MuSig [MPSW18, BDN18] SimpleMuSig [BDN18, CKM21]	DL+ROM	3
	MuSig2 [NRS21] DWMS [AB21] SpeedyMuSig [CKM21]	OMDL+ROM	2
Threshold	Lindell22 Sparkle [CKM23]	Schnorr DL+ROM	3
	FROST [KG20, BCKMTZ22] FROST2 [CKM21]	OMDL+ROM	2

Question: Can we prove that two-round, efficient multi-party Schnorr requires stronger assumptions?

Investigate the Tradeoff Between Efficiency and Security Assumptions for Key Generation

Distributed Key Generation

Distributed Key Generation

Proving the security of DKGs

Proving the security of DKGs

Two options:

Proving the security of DKGs

- Two options:
 - Prove security of the DKG in the context of a proof for unforgeability for a threshold signature scheme

Proving the security of DKGs

- Two options:
 - Prove security of the DKG in the context of a proof for unforgeability for a threshold signature scheme
 - Prove the security of the DKG independently, i.e, via a proof of composability

Composability of Distributed Key Generation

Composability of Distributed Key Generation

Distributed Key Generation

3-Round (optimistically), Composable

2-Round (total) Proven for FROST

GJKR-DKG [GJKR99] Storm [KGS23] DL, CDH

PedPop [KG20, BCKMTZ22]

AGM

standard assumption

stronger assumption

Distributed Key Generation

3-Round (optimistically), 2-Round (total) Composable Proven for FROST GJKR-DKG [GJKR99] PedPop [KG20, Storm [KGS23] BCKMTZ22] DL, CDH **AGM** standard stronger assumption assumption

Question: Do two-round, efficient and composable DKGs exist?

Schnorr multi-party signatures are being used in practice today!

- Schnorr multi-party signatures are being used in practice today!
- Many questions and challenges remain, to improving their usability and security.

- Schnorr multi-party signatures are being used in practice today!
- Many questions and challenges remain, to improving their usability and security.
- We would love to collaborate with anyone interested in tackling these problems or using these schemes, so please come talk to us!

- Schnorr multi-party signatures are being used in practice today!
- Many questions and challenges remain, to improving their usability and security.
- We would love to collaborate with anyone interested in tackling these problems or using these schemes, so please come talk to us!
- (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us know if you would like to join forces.

- Schnorr multi-party signatures are being used in practice today!
- Many questions and challenges remain, to improving their usability and security.
- We would love to collaborate with anyone interested in tackling these problems or using these schemes, so please come talk to us!
- (t,n) of us will also be involved in the NIST call for threshold schemes, so please let us know if you would like to join forces.