Randomness of random in Cisco ASA

Ryad BENADJILA (CryptoExperts)* ryad.benadjila@cryptoexperts.com Arnaud EBALARD (ANSSI)

arnaud.ebalard@ssi.gouv.fr

Real World Crypto – March 28th 2023

^{*}Work performed while at ANSSI.

Work on development projects

- ► X-509 parser [x509-parser]
- Elliptic Curve Cryptography library libecc [libecc]

Tests on a >250 millions X.509 certificates set led to ...

>250 millions X.509 Certs (TLS campaign)

Work on development projects

- ► X-509 parser [x509-parser]
- Elliptic Curve Cryptography library libecc [libecc]

Tests on a >250 millions X.509 certificates set led to ...

>250 millions X.509 Certs (TLS campaign)

82k dup. ECDSA nonces 113k dup. ECDSA keys

Work on development projects

- ► X-509 parser [x509-parser]
- Elliptic Curve Cryptography library libecc [libecc]

Tests on a >250 millions X.509 certificates set led to ...

Work on development projects

- ► X-509 parser [x509-parser]
- Elliptic Curve Cryptography library libecc [libecc]

Tests on a >250 millions X.509 certificates set led to ...

Work on development projects

- ► X-509 parser [x509-parser]
- Elliptic Curve Cryptography library libecc [libecc]

Tests on a >250 millions X.509 certificates set led to ...

Iterative key recovery

Over 313k X.509 ASA ECDSA self-signed certificates with 216k unique keys

Some background on RNG fails ...

History

[CVE-2008-0166] 05/2008: predictible Debian OpenSSL RNG \Rightarrow Broken SSH/SSL RSA/DSA keys [PS3EPICFAIL] 12/2010: Epic Fail ECDSA on the Sony PS3 \Rightarrow Nonce reuse, compromission of the firmware signature key [PSANDQS] 08/2012: Mining your Ps and Qs (modulus GCD) \Rightarrow Compromised RSA keys on many embedded devices [NSBTCFAIL] 01/2013: Recovering BTC private keys \Rightarrow Nonce reuse, crypto-wallet ECDSA key compromission [CVE-2019-1715, RWC-2019] Cisco ASA low entropy keys

Some background on RNG fails ...

History

[CVE-2008-0166] 05/2008: predictible Debian OpenSSL RNG \Rightarrow Broken SSH/SSL RSA/DSA keys [PS3EPICFAIL] 12/2010: Epic Fail ECDSA on the Sony PS3 \Rightarrow Nonce reuse, compromission of the firmware signature key [PSANDQS] 08/2012: Mining your Ps and Qs (modulus GCD) \Rightarrow Compromised RSA keys on many embedded devices [NSBTCFAIL] 01/2013: Recovering BTC private keys \Rightarrow Nonce reuse, crypto-wallet ECDSA key compromission [CVE-2019-1715, RWC-2019] Cisco ASA low entropy keys 🤔

What about understanding and fixing last one for real? 😋 😇 [CVE-2023-20107] Cisco ASA low entropy keys

ANSSI – CryptoExperts

Randomness of random in Cisco ASA

Distribution per month, broken / total Over 313k certs ECDSA ASA

Date (year - month)

- Firewall
- VPN (IPsec / TLS)
- ► IDS/IPS

....

- Firewall
- VPN (IPsec / TLS)
- ► IDS/IPS

...

Cisco ASA 5506 40 € Livraison : à partir de 6,50 €

Hardware devices: easily available for a decent price!

- Firewall
- VPN (IPsec / TLS)
- ► IDS/IPS

Cisco ASA 5506 40 € Livraison : à partir de 6,50 €

- Virtual applicances ASAv
- ► Firmware shared with HW
- Difference: no Cavium

Hardware devices: easily available for a decent price!

Virtual appliances ASAv images available

5506-X stats

Black box approach (through scripting)

Firmware	RSA modulus	ECDSA r nonce	ECDSA x key	#generated			
9.6.2-23				45			
9.6.3-20				15			
9.6.4-34	•		•	15			
9.6.4-36	•		•	15			
9.6.4-40	•		•	15			
9.6.4-41	•		•	15			
9.6.4-42	•		•	15			
9.6.4-45	•		•	45			
9.7.1-4				160			
9.8.1				60			
9.8.2	•	•		60			
9.8.3		•		60			
9.8.4-10				10			
9.8.4-41		•		30			
9.9.1	•	•		30			
9.9.2-85		•		30			
9.10.1-44		•		30			
9.12.4				30			
9.12.4-35				30			
9.13.1-12				30			
9.14.3-18				30			
9.15.1-15				30			
9.16.2-14				30			
9.16.2				45			
collisions shared between firmware versions Same color = collision values shared across versions isolated collisions Firmety by = no observable collisions							
 collisions emerging with same certificate time Versions highlighted are vulnerable and NOT concerned by CVE-2019-1715 							

Randomness of random in Cisco ASA

The RNG players in Cisco ASA

Entropy sources and lifters

Key generation algorithms

Deterministic RNG engines: instantiate, generate, reseed

Entropy sources and lifters

Cheap sources:

- Unseeded rand()

- gettimeofday() (regular and rounded to 10ms)
- rdtsc
- ASLR buffers

- Unitialized buffers

Entropy sources and lifters

key generation algorithms

Deterministic RNG engines: instantiate, generate, reseed

Entropy sources and lifters

Cheap sources:

- Unseeded rand()

- gettimeofday() (regular and rounded to 10ms)
- rdtsc
- ASLR buffers

- Unitialized buffers

- rdrand, rdseedCavium ring oscillators
- Perf counters

Heavily relies
on CPU type (all)
and hypervisor (ASAv)

Entropy sources and lifters

Deterministic generators

Deterministic generators

Deterministic generators

Key generation details

Key generation details

Entropy sources and lifters

Key generation details

Entropy sources and lifters

BSAFE lifter for ECDSA nonce

BSAFE lifter for ECDSA nonce

Overview of instantiated mechanisms

Used mechanisms

- CTR-DRBG used for RSA seed, ECDSA key
- ECDSA nonce using BSAFE with seeds from CTR-DRBG

CTR-DRBG Instantiate

- DRBG Personalization string:
 - Fixed "CiscoSSL DRBG60"
 - time from boot rounded to 10ms

Entropy/nonce:

- 40/20 bytes from MD_RAND ...
- ... seeded by LFSR ...
- ... seeded by 32 bits RDTSC.

CTR-DRBG Generate calls

Addin: counter + time from boot rounded to 10ms

Key aspects of a tricky keygenning

Estimated complexity

- ► 2³² possible LFSR seeds
- $\blacktriangleright~\approx 2^{13}$ possible tuples for the 15 rounded time values

 $\Rightarrow\,$ Exhaustive search for $\approx 2^{45}$ (w/ heavy DRBG calls)

Meet in the middle solution

- Patch the binary with a known fixed seed, do some stats on the timings as independent variables (valid approach)
- Take the most probable paths to reduce complexity, generate enough target certs and validate approach

Timing statistics using patched binary (fixed seed)

▶ Pros: complexity reduced to $\approx 2^{13}$ for stats gathering

Timing statistics using patched binary (fixed seed) + envelope reduction

 Pros: complexity reduced to ~ 2^{37.5} for validation PoC on unpatched binary by reusing these envelope stats

Cons: only 1.7% of possible certs remains accessible

ANSSI – CryptoExperts

Randomness of random in Cisco ASA

Timing statistics using patched binary (fixed seed)

ANSSI – CryptoExperts

Randomness of random in Cisco ASA

ASAv firmware analysis: overview of results

Firmware	RSA	ECDSA	ECDSA	Comment	Keygen
	modulus	nonce	key		time complexity
ASAv9.6.4-36				HASH-DRBG seeded by LFSR seeded by 32	
				bits rdtsc, used for nonce. CTR-DRBG is	
		•		seeded by MD_RAND, itself seeded by	2 ³² (nonce)
				HASH-DRBG itself seeded by a LFSR, itself	
				seeded by rdtsc rounded to 32 bits	
ASAv9.8.1				CTR-DRBG "saved" by addin	
				with true gettimeofday(),	
		•		HASH-DRBG seeded by a	2 ³² (nonce)
				LFSR itself seeded	
				by rdtsc rounded to 32 bits	
ASAv9.8.2				MD_RAND seeded by rand(),	
	•	•	•	ASLR in input buffers for MD_RAND (nonce),	$\approx 2^{33}$
				BSAFE seeded by MD_RAND	
ASAv9.8.3	•	•	•	CTR-DRBG seeded by rand()	$\approx 2^{16}$
				BSAFE seeded by CTR_DRBG	
ASAv9.9.1				MD_RAND seeded by rand(),	
	•	•	•	ASLR in input buffers for MD_RAND (nonce),	$\approx 2^{33}$
				BSAFE seeded by MD_RAND	
ASAv9.10.1-44				CTR-DRBG seeded by MD_RAND	Full: $\approx 2^{45}$
	•	•	•	seeded by LFSR seeded by 32 bits rdtsc.	PoC: $\approx 2^{37.5}$
				Bad gettimeofday is also used.	

Legend:

• Fully broken with a PoC keygen

- Broken with a PoC keygen with higher time complexity
- Fragile entropy sources, harder to exploit (but seems feasible)
- Broken as a side effect of nonce breaking

Versions highlighted are vulnerable and NOT concerned by previous CVE-2019-1715

Conclusion

What we learned already knew.

- Fail instead of fallback to a bad entropy source
- Consider worst code path, remove if unacceptable/unsure
- Mix multiple sources instead of using a single one
- DRBG specific
 - DRBG security depends on instantiate() source
 - Poor addins for DRBG generate() calls is risky
 - Reseeding often is a requirement [DRBG-ANALYSIS]

Final thoughts

- Good looking keys, etc \implies good random
- Good DRBG/PRNG \implies good random
- Full 50 pages article to come for SSTIC 2023 in june

ANSSI – CryptoExperts

Randomness of random in Cisco ASA

20/20

- Ryad Benadjila, Arnaud Ebalard, Jean-Pierre Flori "libecc: an ecc-based signature mechanisms library". Available at https://github.com/libecc/libecc.
- Arnaud Ebalard "x509-parser: a RTE-free X.509 parser". Available at https://github.com/ANSSI-FR/x509-parser. More details at https://www.sstic.org/2019/ presentation/journey-to-a-rte-free-x509-parser/
- Nils Schneider "Recovering Bitcoin private keys using weak signatures from the blockchain", Blog entry, 28 January 2013, http://www.nilsschneider.net/2013/01/ 28/recovering-bitcoin-private-keys.html, broken link use https://archive.org.
- Nadia Heninger and Zakir Durumeric and Eric Wustrow and J. Alex Halderman "Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices", https://www.usenix.org/system/files/conference/ usenixsecurity12/sec12-final228.pdf.

Luciano Bello, "**DSA-1571-1 openssl** – predictable random number generator" available at https://www.debian.org/security/2008/dsa-1571.

failoverflow,

https://web.archive.org/web/20150627235425/https: //events.ccc.de/congress/2010/Fahrplan/ attachments/1780_27c3_console_hacking_2010.pdf, 29 December 2010

Cisco Adaptive Security Appliance Software and Firepower Threat Defense Software Low-Entropy Keys Vulnerability, https://tools.cisco.com/security/center/content/ CiscoSecurityAdvisory/ cisco-sa-20190501-asa-ftd-entropy, May 2019

Joanne Woodage and Dan Shumow "An Analysis of the NIST SP 800-90A Standard", https://eprint.iacr.org/2018/349.pdf, 2018.

Greg Zaverucha and Dan Shumow "Are Certificate Thumbprints Unique?", https://eprint.iacr.org/2019/130.pdf, 2019

Cisco Adaptive Security Appliance Software and Firepower Threat Defense Software Low-Entropy Keys Vulnerability, https://sec.cloudapps.cisco.com/security/center/ content/CiscoSecurityAdvisory/ cisco-sa-asa5500x-entropy-6v9bHVYP, March 2023