Lessons Learned from Protecting CRYSTALS-DILITHIUM

Melissa Azouaoui, Joppe Bos, Olivier Bronchain, Joost Renes, Markus Schönauer, **Tobias Schneider**, and Christine van Vredendaal

contact: pqc@nxp.com

RWC 2023 March 27, 2023

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

Embedded devices are vulnerable to physical attacks.

Protection could require significant effort.Potential to delay deployment of secure PQC.

Embedded devices are vulnerable to **physical attacks**.

Found to be extremely vulnerable. **RWC 2022:** FO-CALYPSE **RWC 2023:** Breaking 5th order masking

Protection could require significant effort.
Potential to delay deployment of secure PQC.

Embedded devices are vulnerable to **physical attacks**.

Protection could require significant effort.
Potential to delay deployment of secure PQC.

Found to be extremely vulnerable. **RWC 2022:** FO-CALYPSE **RWC 2023:** Breaking 5th order masking

DO WE KNOW HOW TO PROTECT DILITHIUM?

Masking Publications until October'22

DO WE KNOW HOW TO PROTECT DILITHIUM?

Masking Publications until October'22

Prior Work [MGTF19]

Masking Dilithium: Efficient Implementation and Side-Channel Evaluation

Vincent Migliore¹, Benoit Gérard²³, Mehdi Tibouchi⁴ and Pierre-Alain ${\rm Fouque}^2$

DO WE KNOW HOW TO PROTECT DILITHIUM?

Masking Publications until October'22

Prior Work [MGTF19]

Masking Dilithium: Efficient Implementation and Side-Channel Evaluation

Vincent Migliore¹, Benoit Gérard²³, Mehdi Tibouchi⁴ and Pierre-Alain ${\rm Fouque}^2$

ePrint 2022/1406

Leveling Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations

Melissa Azouaoui¹, Olivier Bronchain^{1,2}, Gaëtan Cassiers^{2,3,4}, Clément Hoffmann², Yulia Kuzovkova¹, Joost Renes¹, Tobias Schneider¹, Markus Schönauer¹, François-Xavier Standaert² and Christine van Vredendaal¹

What needs to be protected?How should it be protected?What are the bottlenecks?How can it be fixed?

WHAT NEEDS TO BE PROTECTED?

PRIOR WORK [MGTF19]

PRIOR WORK [MGTF19]

 $\frac{\text{Protecting } \mathbf{w}}{\mathbf{w} = \mathbf{A} \cdot \mathbf{y} \Rightarrow \mathbf{y} \text{ can be computed from } \mathbf{w}}$

PRIOR WORK [MGTF19]

UPDATED SENSITIVITY ANALYSIS

UPDATED SENSITIVITY ANALYSIS

Protecting w₁ Public for valid signatures, unclear for rejected signatures

HOW SHOULD IT BE PROTECTED?

Standard Approach: Masking

Observation 1: Requires a mixture of Boolean and arithmetic masking with a prime modulus

HOW SHOULD IT BE PROTECTED?

Standard Approach: Masking

Signature Generation

Observation 1: Requires a mixture of Boolean and arithmetic masking with a prime modulus

Proposal from [MGTF19]: Switch from prime to power-of-two modulus results in 7x – 9x speed-up

HOW SHOULD IT BE PROTECTED?

Standard Approach: Masking

Signature Generation

Observation 2: Deterministic is much more vulnerable than **randomized** Dilithium.

Additional long-term secret K

Measurements can be repeated with same inputs to reduce noise.

More vulnerable to fault attacks as well.

Benchmark Masked Dilithium-3 (M4):

Benchmark Masked Dilithium-3 (M4):

Observation 1:

Deterministic has comparable performance to randomized for **same** security order. **Deterministic** requires increased order. **Note:** Impacts memory requirements as well.

Benchmark Masked Dilithium-3 (M4):

Observation 2: Protected Keccak for sampling *y* takes up **50%** of runtime.

HOW COULD IT BE FIXED?

Randomized:

HOW COULD IT BE FIXED?

Randomized:

HOW COULD IT BE FIXED?

Randomized:

Flexible-Sampling:

- Does not specify how *y* is sampled
- Option: Generate shares of *y* via TRNG

Note: Requires proper TRNG or post-processing

Benchmark Masked Dilithium-3 (M4):

Observation 3: Flexible-Sampling provides significant speed-up over randomized.

WHAT WILL BE DONE?

Hedged:

Combined deterministic and randomized Dilithium into one

- $\rho' = random \ string$ if randomized Dilithium
- $\rho' = "$ " if deterministic Dilithium

Benchmark Masked Dilithium-3 (M4):

Observation 4: Hedged (Randomized) provides comparable performance as **randomized**.

Randomized should be the default for embedded.

Hedged has negligible impact on runtime.

NP

Randomized should be the default for embedded.

Hedged has negligible impact on runtime.

Flexible sampling would enable significant speed-up.

Randomized should be the default for embedded.

Hedged has negligible impact on runtime.

Flexible sampling would enable significant speed-up.

Hardening Dilithium still not mature.

Much less studied than Kyber.

CONTACT: <u>PQC@NXP.COM</u> | NXP.COM/PQC