Reversing, Breaking, and Fixing the
French Legislative Election
E-Voting Protocol

Alexandre Debant and Lucca Hirschi, Inria Nancy
28 mars 2023 @ Real World Crypto

Largest E-voting Election

Largest election?

Largest election?

i 4+1.5MM eligible voters (French citizens resident overseas)

& +500k ballots were cast over internet (largest number ever using e-voting)

3/19

Largest election?

i 4+1.5MM eligible voters (French citizens resident overseas)

& +500k ballots were cast over internet (largest number ever using e-voting)

This election was based on a new protocol, better be sure it Is secure!
(FLEP)

3/19

Largest election?

i 4+1.5MM eligible voters (French citizens resident overseas)

& +500k ballots were cast over internet (largest number ever using e-voting)

This election was based on a new protocol, better be sure it Is secure!
(FLEP)

Two central security goals for e-voting:

<& Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

3/19

The E-voting Protocol: FLEP

Decryption Trustees

D()-—-u-
O

The protocol roles

I] == ®

Voter Voting Client Voting Server Third-Party

Decryption Trustees
O=—r
O—

by representatives and officials

The protocol roles

: =
Voter Voting Client Voting Server Third-Party
At home Javascript running in a browser @ French Ministry for Europe and Foreign Affairs by independent researchers

5/19

Decryption Trustees
O=—r
O—

by representatives and officials

The protocol workflow

: =
Voter Voting Client Voting Server Third-Party
Javascript running in a browser @ French Ministry for Europe and Foreign Affairs by independent researchers
- > >
< - >
>

5/19

Decryption Trustees
O=—r
O—

by representatives and officials

The protocol workflow

? ?
o
i - = ®
Voter Voting Client Voting Server Third-Party

At home Javascript running in a browser @ French Ministry for Europe and Foreign Affairs by independent researchers

?

Avalilable documentation and specification are inexistent or lacunar!

5/19

Decryption Trustees
O=—r
O—

by representatives and officials

The protocol workflow

Reverse the obfuscated voting client

(Javascript & HTML)))
@
I = ®
Voter . Voting Server Third-Party

At home Javascript It c ser @ French Ministry for Europe and Foreign Affairs by independent researchers

?

Avalilable documentation and specification are inexistent or lacunar!

5/19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

- = ®

Voting Client Voting Server Third-Party

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

- = ®

Voting Client Voting Server Third-Party

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

- = ®

Voting Client Voting Server Third-Party

B /= (v} ZKPs)

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

Ballot Privacy: — @
votes are encrypted @

Voting Client

Voting Server Third-Party

/KPs)

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

- = ®

Voting Client Voting Server Third-Party

B /= (v} ZKPs)

(@ H = b, ballotBox) Qsign(m |
 — |

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

ballotBox for each consular (~city)

Ill result per ballotBox

] == ®

Voting Client Voting Server Third-Party

B /= (v} ZKPs)

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

for each consular (~city)

result per
:l o ®
Voting Client Voting Server Third-Party
v N » = ({v},up> ZKPs)
@ 9 @ H := h(b, ballotBox) 9 sign(H)

—

6 /19

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

for each consular (~city)

result per
Voting Client Voting Server Third-Party
v N » = ({v},up> ZKPs)
@ 9 @ H := h(b, ballotBox) 9 sign(H)

—

6 /19

Decryption Trustees

kD
O-—-r: p

| |

The protocol flow (simplified)

for each consular (~city)

result per

——
v Illper ballotBox
Voting Client Voting Server Third-Party
v N » = ({v},up> ZKPs)
Q D 17 . :
«© 9 @ H := h(b, ballotBox) 9 sign(H)

—

6 /19

The protocol flow (simplified)

for each consular (~city)

result per
Voting Client
B

Voting Server

Decryption Trustees

kD
O-—-r: p

| |

=

v Illper ballotBox

2 \®

Third-Party

Decryption Trustees

kD
O-—-r: p

The protocol flow (simplified)

for each consular (~city)

| |

=

result per

v Illper ballotBox

B /= (v} ZKPs)

@ H = h(b, ballotBox) Q sign(H)

Verifiability:
act as verifiable receipts

= = \®

Voting Client Voting Server Third-Party

Security goals and threat models

Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

7 /19

Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

Threat models — security expectations under

o
) O—
:I — = O—x
Communication
Channel

I

Voter Voting Client

Voting Server Decryption Trustees Third-Party

7 /19

Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

Threat models — security expectations under

= %2 *
ommunicatio Voting Server Decryption Trustees Third-Party

Voter Voting Client Channel

Plaintext/under TLS: e.g., certificate leak 2

Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

Threat models — security expectations under

@ O_'l'
] =2 @ g @

Communication

I

Voter Voting Client

Voting Server Decryption Trustees Third-Party

Channel
Ballot Privacy (&) 2y 2 2 = =
Verifiability (&) 2y 2 2)

7 /19

Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted

Threat models — attacks under

-

O
o=, @

0
H

I

Voter Voting Client

communication /0 Server Decryption Trustees Third-Party

Channel
_ > > —_— —_— <>
Ballot Privacy (&) T 2 = = =
S > —_— <>
Verifiabilty & & ¢ © © ©

7 /19

Contributions

Contributions @ https://eprint.iacr.org/2022/1653

k’
z/ First public and comprehensive specification of the protocol by reverse

@ Verifiability and ballot privacy can be attacked by a channel/server attacker:
e 2 design and implementation vulnerabilities

* 0 attack variants
Q Propose 6 fixes, most of them already implemented for the 2023 election

q Lessons for future e-voting elections

9/19

Attacking and Fixing

Election integrity and privacy

Attacking verifiability and election integrity

] == ©

Voting Client Voting Server Third-Party

K

N
@

@

11/19

Attacking verifiability and election integrity

I] == ©

Voting Client Voting Server Third-Party

11/19

Attacking verifiability and election integrity

] == ©

Voting Client Voting Server Third-Party

~§
~§
N

11/19

Attacking verifiability and election integrity

I - == ©

Voting Server Third-Party

 There are 4 versions of @ with various consistency checks in the JavaScript voting client

11/19

Attacking verifiability and election integrity

] == ©

Voting Server Third-Party

-
———
c &=

 There are 4 versions of @ with various consistency checks in the JavaScript voting client

* Implementation vulnerability #1 = the @I 9 actually displayed to the voter can be attacker-controlled

11/19

Attacking verifiability and election integrity

] == ©

Voting Client Voting Server Third-Party

1 eRe
g%
—_—

(

@

-
———
c &=

 There are 4 versions of @ with various consistency checks in the JavaScript voting client

* Implementation vulnerability #1 = the @I 9 actually displayed to the voter can be attacker-controlled

11/19

Attacking verifiability and election integrity
] % ®

Voting Client Voting Server Third-Party

1 eRe
g%
—_—

@

T

S
 There are 4 versions of @ with various consistency checks in the JavaScript voting client

« Implementation vulnerability #1 = the @ \&' @ actually displayed to the voter can be attacker-controlled

11/19

Attacking verifiability and election integrity
] % ®

Voting Client Voting Server Third-Party

NS

@ ®

N4 <

 There are 4 versions of \:@ with various consistency checks in the JavaScript voting client

* Implementation vulnerability #1 = the @I 9 actually displayed to the voter can be attacker-controlled

* Impact: channel or server attacker can stealthily modify the outcome by replacing or dropping ballots

11/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(b, ballotBox)

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)
@ H := h(b, ballotBox)

'lhllln] = ©

Voter In Sydney Voting Client Voting Server Third-Party

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(b, ballotBox)

'lhllln] = ©

Voter In Sydney Voting Client Voting Server Third-Party

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(p, ballotBox)

\

O

Voter In Sydney Voting Client Voting Server <. Third-Party
f
. —

In Minsk

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(b, ballotBox)

O
VVoter In Sydney Voting Client Voting Server < Third-Party
.. o S —) ,
N—
—_— —

In Minsk

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(b, ballotBox)

O
VVoter In Sydney Voting Client Voting Server < Third-Party
.. o S —) ,
N—
—_— s ==

In Minsk

(@ H = h(bminsk)
—

12/19

Attacking ballot privacy (preliminary)

N © = ({v},p> ZKPs)

* Design vulnerability #2 = ballots ZKPs do not bind ballotBox @ H := h(b, ballotBox)

O
VVoter In Sydney Voting Client Voting Server < Third-Party
.. o S —) ,
N—
—_— s ==

In Minsk

(@ H = h(bminsk)
—

12/19

Attacking ballot privacy (simplified)

In Sydney Target Voter

ali
T

In Minsk

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

In Sydney Target Voter

|
w

In Minsk

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

Al 1 '

In Sydney Target Voter

all,
)

In Minsk

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

Al 1 '

In Sydney Target Voter

ali
T

In Minsk

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

= e &
m w @ H := h(b, Minsk) 9

-—
In Sydney Target Voter

o _
f

In Minsk

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

= e &
m w @ H := h(b, Minsk) 9

——

In Sydney Target Voter

® !
A T = B
In Minsk 'i‘ |

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

= e &
m w @ H := h(b, Minsk) 9

-—
In Sydney Target Voter

e

o -
f

In Minsk

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

= e &
m w @ H := h(b, Minsk) 9

-—
In Sydney Target Voter

f

In Minsk

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

il
'Ilm'li.'l'

HV?

= e &
m w @ H := h(b, Minsk) 9

——

In Sydney Target Voter

In Minsk

f

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

ity
'imli!ww
HV?

= e &
m w @ H := h(b, Minsk) 9

-—
In Sydney Target Voter

In Minsk

f

13/19

Attacking ballot privacy (simplified)

(o =)

==

Voting Server

HV?

—_——

@ H := h(b, Minsk) 9
D

In Sydney Target Voter

f

In Minsk

* Impact: channel or server attacker can stealthily learn some target voters’ vote (and perform remote coercion)
13/19

Fix the FLEP and future election

We proposed 6 fixes and notably:
1. Display and check U instead of & v/x
2. Binds ballotBox to the ballot ZKPs " already implemented for 2023

3. Third-Party checks ballotBox v/ already implemented for 2023

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.)
Special thanks to the ANSSI who have been proactive in this process.

14/19

| essons Learned

Recommendations and research questions

How come?

1: Adapt the design FLEP
BE @ I ———— =l ge (e ele]

State-of-art protocol
affected by none of the attacks

16/19

How come?

ng 0
\mw 1 /
0oty

BE@ OS

State-of-art protocol
affected by none of the attacks

1: Adapt the design

FLEP
Protocol

2: Implement, Deploy, Audit

2022 Election

m

FLEP 2022
affected by 6 attacks

+ other concerns
not discussed here

16/19

1: Adapt the design

17/19

1: Adapt the design‘

Operational constraints as scientific bottleneck

1. State-of-the-art solutions lack features for real-world use cases
* Multi-ballot-box for announcing fine-grain results (+ properties./proofs)
 Downloadable receipts e

2. Distribute trust for the voters authentication is an open problem (practical solution)
= currently a single-point-of-trust for eligibility verification

3. Security by protocol-design versus operational rules
= currently decryption quorum rules are not properly cryptographically enforced

17/19

2: Implement, Deploy, Audit

18/19

2: Implement, Deploy, Audit

1. Voting client Is the critical component (versus focus on securing the server)
 Make it trustworthy: open spec and source, audit, etc.
 Make it monitorable to allow detecting servers serving modified voting clients (e.g., SPA)

 Simplify and specify the voters’ journey/tasks and assume no more (we proposed some)

More generally:
any component that needs to be trusted must undergo such process

2. Transparency and Openness
* (Clear security objectives and threat models

* QOpen specification, promote public scrutiny (e.g., bung bounty as in Switzerland)

18/19

= https://eprint.iacr.org/2022/1653

Conclusion

19/19

= https://eprint.iacr.org/2022/1653

Conclusion

What can go wrong with and what can be learnt from
adapting and deploying a proven secure academic e-voting protocol
to the real world ?

k’
z/ First public and comprehensive specification of the protocol by reverse

@ Verifiability and ballot privacy can be attacked by a channel/server attacker:
* 2 design and implementation vulnerabilities

* 6 attack variants
Q Propose 6 fixes, most of them already implemented for the 2023 election

q Lessons for future e-voting elections

19/19

