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Largest election?

i 4+1.5MM eligible voters (French citizens resident overseas)

& +500k ballots were cast over internet (largest number ever using e-voting)

This election was based on a new protocol, better be sure it Is secure!
(FLEP)

Two central security goals for e-voting:

<& Ballot Privacy: an attacker cannot learn the choice of a voter

8 Verifiability: voters must have the guarantee that their ballots are counted
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Security goals and threat models

Security goals

<® Ballot Privacy: an attacker cannot learn the choice of a voter
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Contributions @ https://eprint.iacr.org/2022/1653

k’
z/ First public and comprehensive specification of the protocol by reverse

@ Verifiability and ballot privacy can be attacked by a channel/server attacker:
e 2 design and implementation vulnerabilities

* 0 attack variants
Q Propose 6 fixes, most of them already implemented for the 2023 election

q Lessons for future e-voting elections
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Attacking verifiability and election integrity
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 There are 4 versions of \:@ with various consistency checks in the JavaScript voting client

* Implementation vulnerability #1 = the @I 9 actually displayed to the voter can be attacker-controlled

* Impact: channel or server attacker can stealthily modify the outcome by replacing or dropping ballots
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* Impact: channel or server attacker can stealthily learn some target voters’ vote (and perform remote coercion)
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Fix the FLEP and future election

We proposed 6 fixes and notably:
1. Display and check U instead of & v/x
2. Binds ballotBox to the ballot ZKPs " already implemented for 2023

3. Third-Party checks ballotBox v/ already implemented for 2023

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.)
Special thanks to the ANSSI who have been proactive in this process.
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| essons Learned

Recommendations and research questions
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FLEP
Protocol

2: Implement, Deploy, Audit

2022 Election

m

FLEP 2022
affected by 6 attacks

+ other concerns
not discussed here
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1: Adapt the design‘

Operational constraints as scientific bottleneck

1. State-of-the-art solutions lack features for real-world use cases
* Multi-ballot-box for announcing fine-grain results (+ properties./proofs)
 Downloadable receipts e

2. Distribute trust for the voters authentication is an open problem (practical solution)
= currently a single-point-of-trust for eligibility verification

3. Security by protocol-design versus operational rules
= currently decryption quorum rules are not properly cryptographically enforced
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2: Implement, Deploy, Audit

1. Voting client Is the critical component (versus focus on securing the server)
 Make it trustworthy: open spec and source, audit, etc.
 Make it monitorable to allow detecting servers serving modified voting clients (e.g., SPA)

 Simplify and specify the voters’ journey/tasks and assume no more (we proposed some)

More generally:
any component that needs to be trusted must undergo such process

2. Transparency and Openness
* (Clear security objectives and threat models

* QOpen specification, promote public scrutiny (e.g., bung bounty as in Switzerland)
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= https://eprint.iacr.org/2022/1653

Conclusion

What can go wrong with and what can be learnt from
adapting and deploying a proven secure academic e-voting protocol
to the real world ?

k’
z/ First public and comprehensive specification of the protocol by reverse

@ Verifiability and ballot privacy can be attacked by a channel/server attacker:
* 2 design and implementation vulnerabilities

* 6 attack variants
Q Propose 6 fixes, most of them already implemented for the 2023 election

q Lessons for future e-voting elections
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