
Kevin Lewi

WhatsApp
End-to-End
Encrypted Backups

(Unencrypted) Cloud Backups

End-to-End Encrypted (E2EE) Backups

Goal: Full privacy of message content

• Including from backup storage providers (Apple / Google)

• Including even from WhatsApp / Meta

Solutions:

• Ask users to write down the bytes of their encryption key

• Ask users to remember a password + enforce attempt limit

This talk

WhatsApp Key Vault

WhatsApp Key Vault

WhatsApp Key Vault

WhatsApp Key Vault

WhatsApp Key Vault

Remainder of this talk

Client Authentication

How to securely authenticate client to HSMs?

Option 1: “Hash-then-Encrypt” or “Password-over-TLS”
○ Client hashes their PIN, and then PK-encrypts to the HSM

○ HSM decrypts and verifies hash

Option 2: Password-Authenticated Key Exchange
○ Establish a secure channel between client and HSM based on PIN

○ Transmit backup key through this channel

OPAQUE [Jarecki, Krawczyk, Xu ‘18]

• OPAQUE is a strong, asymmetric

password-authenticated key exchange

(saPAKE) protocol

• Theorem: Oblivious PRF +

Authenticated KE -> saPAKE

• We use DH-OPRF: F(k,x) = H(x, H(x)^k)

OPAQUE in E2EE Backups

On backup registration:

On backup recovery:

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

3. Pick a random

OPRF key K’ and

nonce4. Send β = α^K’, nonce

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

3. Pick a random

OPRF key K’ and

nonce4. Send β = α^K’, nonce

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r))

6. Compute K* = AES-128(export_key, K) and client_PK = g^client_SK

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

3. Pick a random

OPRF key K’ and

nonce4. Send β = α^K’, nonce

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r))

6. Compute K* = AES-128(export_key, K) and client_PK = g^client_SK

7. Send E = RSA-OAEP(HSM_PK, K* || client_PK || transcript)

8. Decrypt E and

verify transcript, then

store K*, K’, and

client_PK for user

E2EE Backups: Registration

Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

3. Pick a random

OPRF key K’ and

nonce4. Send β = α^K’, nonce

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r))

6. Compute K* = AES-128(export_key, K) and client_PK = g^client_SK

8. Decrypt E and

verify transcript, then

store K*, K’, and

client_PK for user
7. Send E = RSA-OAEP(HSM_PK, K* || client_PK || transcript)

PRF F(k, x) = PBKDF(x, H(x)^k)

Client has backup key K and PIN.

For each client, server stores:

- K’, a freshly generated PRF key
- K* = AES128(F(K’, pwd), K)
- client_PK

E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

2. Send α = H(pwd)^r, client_e_PK
1. Pick a random scalar r and

client_e_SK

E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

2. Send α = H(pwd)^r, client_e_PK
1. Pick a random scalar r and

client_e_SK 3. Pick a server_e_SK,

decrement

attempt_counter
4. Send β = α^K’, server_e_PK, σ = Sign(HSM_SK, β)

E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

2. Send α = H(pwd)^r, client_e_PK
1. Pick a random scalar r and

client_e_SK 3. Pick a server_e_SK,

decrement

attempt_counter
4. Send β = α^K’, server_e_PK, σ = Sign(HSM_SK, β)

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r))

6. Derive shared_secret_key from KE protocol

7. < Complete KE with server >

E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

2. Send α = H(pwd)^r, client_e_PK
1. Pick a random scalar r and

client_e_SK 3. Pick a server_e_SK,

decrement

attempt_counter
4. Send β = α^K’, server_e_PK, σ = Sign(HSM_SK, β)

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r))

6. Derive shared_secret_key from KE protocol

7. < Complete KE with server >

8. Verify KE

completion, reset

attempt_counter, and

obtain

shared_secret_key

9. Send C = AES(shared_secret_key, K*)

10. Decrypt C with shared_secret_key, then decrypt result with export_key to obtain K

More Resources

● Security audit from NCC Group in

2021

● We released a whitepaper on the

E2EE backup design

● Open-source Rust OPAQUE library

Future Work

1. Alternatives to HSMs?

2. Threshold OPRFs / OPAQUE?

WhatsApp End-to-End Encrypted Backups

As of December 2022:

