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End-to-End Encrypted (E2EE) Backups

Goal: Full privacy of message content

• Including from backup storage providers (Apple / Google)

• Including even from WhatsApp / Meta

Solutions:

• Ask users to write down the bytes of their encryption key

• Ask users to remember a password + enforce attempt limit

This talk
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WhatsApp Key Vault

Remainder of this talk



Client Authentication

How to securely authenticate client to HSMs?

Option 1: “Hash-then-Encrypt” or “Password-over-TLS”
○ Client hashes their PIN, and then PK-encrypts to the HSM

○ HSM decrypts and verifies hash

Option 2: Password-Authenticated Key Exchange
○ Establish a secure channel between client and HSM based on PIN

○ Transmit backup key through this channel



OPAQUE [Jarecki, Krawczyk, Xu ‘18]

• OPAQUE is a strong, asymmetric 

password-authenticated key exchange 

(saPAKE) protocol

• Theorem: Oblivious PRF + 

Authenticated KE -> saPAKE

• We use DH-OPRF: F(k,x) = H(x, H(x)^k)



OPAQUE in E2EE Backups

On backup registration:

On backup recovery:
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Client HSM Server

K, pwd, HSM_PK HSM_SK

2. Send α = H(pwd)^r
1. Pick a random scalar r

3. Pick a random 

OPRF key K’ and 

nonce4. Send β = α^K’, nonce

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r)) 

6. Compute K* = AES-128(export_key, K) and client_PK = g^client_SK 

8. Decrypt E and 

verify transcript, then 

store K*, K’, and 

client_PK for user
7. Send E = RSA-OAEP(HSM_PK, K* || client_PK || transcript)  

PRF F(k, x) = PBKDF(x, H(x)^k)

Client has backup key K and PIN.

For each client, server stores:

- K’, a freshly generated PRF key
- K* = AES128(F(K’, pwd), K)
- client_PK
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E2EE Backups: Recovery

Client HSM Server

pwd, HSM_PK HSM_SK, K’, K*, client_PK

2. Send α = H(pwd)^r, client_e_PK
1. Pick a random scalar r and 

client_e_SK 3. Pick a server_e_SK, 

decrement 

attempt_counter
4. Send β = α^K’, server_e_PK, σ = Sign(HSM_SK, β)

5. Compute (export_key, client_SK) = PBKDF(pwd, β^(1/r)) 

6. Derive shared_secret_key from KE protocol

7. < Complete KE with server >

8. Verify KE 

completion, reset 

attempt_counter, and 

obtain 

shared_secret_key 

9. Send C = AES(shared_secret_key, K*)

10. Decrypt C with shared_secret_key, then decrypt result with export_key to obtain K



More Resources

● Security audit from NCC Group in 

2021

● We released a whitepaper on the 

E2EE backup design

● Open-source Rust OPAQUE library



Future Work

1. Alternatives to HSMs?

2. Threshold OPRFs / OPAQUE?



WhatsApp End-to-End Encrypted Backups
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