Time-Space Tradeoff for Collision Finding in Sponge Functions

Xiaoqi Duan, Akshima, Siyao Guo, Qipeng Liu

ETH Zürich; NYU Shanghai; UC San Diego
November 30, 2023

Domain Extension Hash Functions

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

SHA-3: Sponge Hash Functions

$$
f:[C] \times[R] \rightarrow[C] \times[R] \text { is a random permutation }
$$

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

SHA-3: Sponge Hash Functions $f:[C] \times[R] \rightarrow[C] \times[R]$ is a random permutation Can access both f and f^{-1}

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

SHA-3: Sponge Hash Functions $f:[C] \times[R] \rightarrow[C] \times[R]$ is a random permutation Can access both f and f^{-1}
Target: Hard to find collisions

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

SHA-3: Sponge Hash Functions

$$
\begin{array}{r}
f:[C] \times[R] \rightarrow[C] \times[R] \text { is a random permutation } \\
\text { Can access both } f \text { and } f^{-1}
\end{array}
$$

Target: Hard to find collisions
SHA-3 is less secure?

Domain Extension Hash Functions

SHA-2: Merkle-Damgård Hash Functions

$$
f:[N] \times[M] \rightarrow[N] \text { is a random function }
$$

SHA-3: Sponge Hash Functions

$$
\begin{array}{r}
f:[C] \times[R] \rightarrow[C] \times[R] \text { is a random permutation } \\
\text { Can access both } f \text { and } f^{-1}
\end{array}
$$

Target: Hard to find collisions
SHA-3 is less secure?

Auxiliary-Input (AI) Model

Intuition: Extra knowledge about f, e.g. backdoors?

Auxiliary-Input (AI) Model

Intuition: Extra knowledge about f, e.g. backdoors?
Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Auxiliary-Input (AI) Model

Intuition: Extra knowledge about f, e.g. backdoors?
Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Trivial birthday attack advantage: $T^{2} / N(M D)$ or T^{2} / R (Sponge)

Auxiliary-Input (AI) Model

Intuition: Extra knowledge about f, e.g. backdoors?
Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Trivial birthday attack advantage: $T^{2} / N(M D)$ or T^{2} / R (Sponge) Exist non-trivial attacks!

Short Collision Finding in Merkel Damgård [CDGS18,ACDW20,GK22,AGL22]

Message Length	Best Known Attack
$B=1$	$S / N+T^{2} / N$
$B=2$	$S T / N+T^{2} / N$
$3 \leq B \leq T$	$S T B / N+T^{2} / N$
$B>T$	$S T^{2} / N$

Short Collision Finding in Sponge [FGK22]

Message Length	Known Attack (MD)	Known Attack (Sponge)
$B=1$	$S / N+T^{2} / N$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$
$B=2$	$S T / N+T^{2} / N$	$S T / C+T^{2} / \min (C, R)$
$3 \leq B \leq T$	$S T B / N+T^{2} / N$	$S T B / C+T^{2} / \min (C, R)$
$B>T$	$S T^{2} / N$	$S T^{2} / C+T^{2} / R$

Better attacks than MD even when $B=1$

Short Collision Finding in Sponge [FGK22]

Message Length	Known Attack (MD)	Known Attack (Sponge)
$B=1$	$S / N+T^{2} / N$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$
$B=2$	$S T / N+T^{2} / N$	$S T / C+T^{2} / \min (C, R)$
$3 \leq B \leq T$	$S T B / N+T^{2} / N$	$S T B / C+T^{2} / \min (C, R)$
$B>T$	$S T^{2} / N$	$S T^{2} / C+T^{2} / R$

Better attacks than MD even when $B=1$
Utilizes the inverse oracle

Multi-Instance Games

What about security upper bounds?

Multi-Instance Games

What about security upper bounds?

Old Techniques [DGK17,CDGS18]: presampling, compression

Multi-Instance Games

What about security upper bounds?
Old Techniques [DGK17,CDGS18]: presampling, compression

Multi-Instance Games (MI): A recent technique for proving security bounds for preprocessing attacks [IK10,CGLQ20,ACDW20,AGL22,FGK22]

Upper Bounds in Merkel Damgård [ACDW20,GK22,AGL22]

Message Length	Best Known Attack	Upper Bound Tight?
$B=1$	$S / N+T^{2} / N$	\checkmark
$B=2$	$S T / N+T^{2} / N$	\checkmark
$3 \leq B \leq T$	$S T B / N+T^{2} / N$	\times
$B>T$	$S T^{2} / N$	\checkmark

MI works pretty well here

Upper Bounds in Sponge [FGK22]

Message Length	Best Known Attack	Upper Bound Tight?
$B=1$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$	\times
$+S / C+T^{2} / R$		
$B=2$	$S T / C+T^{2} / \min (C, R)$	\times
$3 \leq B \leq T$	$S T B / C+T^{2} / \min (C, R)$	\times
$B>T$	$S T^{2} / C+T^{2} / R$	\checkmark

Upper Bounds in Sponge [FGK22]

Message Length	Best Known Attack	Upper Bound Tight?
$B=1$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$	\times
	$S T / C+T^{2} / \min (C, R)$	\times
$B=2$	$S T B / C+T^{2} / \min (C, R)$	\times
$3 \leq B \leq T$	$S T B T^{2} / C+T^{2} / R$	\checkmark
$B>T$		

What happens at sponge?

Upper Bound in Sponge [FGK22]

Message Length	Best Known Attack	Upper Bound
$B=1$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$	$S T / C+T^{2} / R$
$B=2$	$S T / C+T^{2} / \min (C, R)$	$S T / C+S^{2} T^{4} / C^{2}$ $+T^{2} / \min (C, R)$
$3 \leq B \geq T$	$S T B / C+T^{2} / \min (C, R)$	$S T^{2} / C+T^{2} / R$
$B>T$	$S T^{2} / C+T^{2} / R$	$S T^{2} / C+T^{2} / R$

What happens at sponge?

Upper Bound in Sponge [FGK22]

Message Length	Best Known Attack	Upper Bound
$B=1$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$	$S T / C+T^{2} / R$
$B=2$	$S T / C+T^{2} / \min (C, R)$	$S T / C+S^{2} T^{4} / C^{2}$ $+T^{2} / \min (C, R)$
$3 \leq B \geq T$	$S T B / C+T^{2} / \min (C, R)$	$S T^{2} / C+T^{2} / R$
$B>T$	$S T^{2} / C+T^{2} / R$	$S T^{2} / C+T^{2} / R$

What happens at sponge?
Can we prove better bounds (via MI)?

Our Results

Message Length	Best Known Attack	Upper Bound Tight?
$B=1$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$ $+S / C+T^{2} / R$	Almost
	$S T / C+T^{2} / \min (C, R)$	\times
$B=2$	$S T B / C+T^{2} / \min (C, R)$	\times
$3 \leq B \leq T$	$S T^{2} / C+T^{2} / R$	\checkmark
$B>T$		

Better bounds for $B=1$, Simpler proofs for $B=2$

Our Results

Message Length	Upper Bound Tight?	Better bounds for MI?
$B=1$	Almost	\times
$B=2$	\times	\times
$3 \leq B \leq T$	\times	\times
$B>T$	\checkmark	-

Limit of MI games

MI and Al

Advantages between MI and Al adversaries [AGL22]

We can reduce an AI adversary with success probability 2ϵ to an MI adversary with probability $\tilde{O}\left(\epsilon^{S}\right)$.

MI and Al

Advantages between MI and Al adversaries [AGL22]

We can reduce an AI adversary with success probability 2ϵ to an MI adversary with probability $\tilde{O}\left(\epsilon^{S}\right)$.

Proof Idea. Guess the S-bit advice and run AI with that advice each round. The 2^{-S} guessing probability will be amortized into ϵ^{S}.

Multi-Instance Games

Repeat S times:

Multi-Instance Games

Repeat S times:

Adversary
Oracle

Multi-Instance Games

Multi-Instance Games

Something to mention:

- No advice string
- f doesn't change within rounds
- Has "memory" of previous rounds
- Need to win all S rounds

Multi-Instance Techniques

Main idea: By bounding the success probability of the MI game, we directly have upper bound for the original Al adversary.

Multi-Instance Techniques

Main idea: By bounding the success probability of the MI game, we directly have upper bound for the original Al adversary.

Advantages of MI game:

- No advice bits

Multi-Instance Techniques

Main idea: By bounding the success probability of the MI game, we directly have upper bound for the original Al adversary.

Advantages of MI game:

- No advice bits
- Ability to use lazy sampling and other techniques

Multi-Instance Techniques

Main idea: By bounding the success probability of the MI game, we directly have upper bound for the original Al adversary.

Advantages of MI game:

- No advice bits
- Ability to use lazy sampling and other techniques

Often easier to find upper bounds

Our Results

	Upper Bound	Known Attack
$B=1$	$S^{2} T^{2} / C^{2}+T^{2} / R$	$\min \left((S T / C)^{2},\left(S^{2} T / C^{2}\right)^{\frac{2}{3}}\right)$
	$+S / C+T / C$	$+S / C+T^{2} / R$
$B=2$	$S T / C+S^{2} T^{4} / C^{2}$	$S T / C+T^{2} / \min (C, R)$
	$+T^{2} / \min (C, R)$	
$B \geq 3$	$S T^{2} / C+T^{2} / R$	$S T B / C+T^{2} / \min (C, R)$

Our proof uses Multi-Instance Games technique and highly non-trivial compression argument (please refer to original paper)

Our Results

Showed limitations of MI Techniques:

	Upper Bound Given by MI	Best Attack in MI
$B=1$	$\left(\tilde{O}\left(S^{2} T^{2} / C^{2}+T^{2} / R+S / C+T / C\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S^{2} T^{2} / C^{2}\right)\right)^{S}$
$B=2$	$\left(\tilde{O}\left(S T / C+S^{2} T^{4} / C^{2}+T^{2} / \min (C, R)\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S^{2} T^{4} / C^{2}\right)\right)^{S}$
$B \geq 3$	$\left(\tilde{O}\left(S T^{2} / C+T^{2} / R\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S T^{2} / C\right)\right)^{S}$

Our Results

Showed limitations of MI Techniques:

	Upper Bound Given by MI	Best Attack in MI
$B=1$	$\left(\tilde{O}\left(S^{2} T^{2} / C^{2}+T^{2} / R+S / C+T / C\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S^{2} T^{2} / C^{2}\right)\right)^{S}$
$B=2$	$\left(\tilde{O}\left(S T / C+S^{2} T^{4} / C^{2}+T^{2} / \min (C, R)\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S^{2} T^{4} / C^{2}\right)\right)^{S}$
$B \geq 3$	$\left(\tilde{O}\left(S T^{2} / C+T^{2} / R\right)\right)^{S}$	$\left(\tilde{\Omega}\left(S T^{2} / C\right)\right)^{S}$

It means we can't use MI to further bridge the gaps.

Sponge Hash Functions

Sponge $^{f}(I V, m):=x$
where $f:[R] \times[C] \rightarrow[R] \times[C]$ is a permutation

MI Attack, B=2

$$
f^{-1}\left(0, \frac{i T}{2}+2\right)
$$

MI Attack, B=2

(1) Query $f^{-1}(0, i)$ for different i

$$
f^{-1}\left(0, \frac{i T}{2}+2\right)
$$

MI Attack, B=2

(1) Query $f^{-1}(0, i)$ for different i (2) For challenge salt a, query $f(j, a)$ for different j

MI Attack, B=2

(1) Query $f^{-1}(0, i)$ for different i (2) For challenge salt a, query $f(j, a)$ for different j
If two queries in (2) hits two salts visited in (1),

$$
\begin{aligned}
f^{-1}\left(0, i_{1}\right) & =\left(m_{1}, a_{1}\right) \\
f\left(m_{3}, a\right) & =\left(m_{5}, a_{1}\right) \\
f^{-1}\left(0, i_{2}\right) & =\left(m_{2}, a_{2}\right) \\
f\left(m_{4}, a\right) & =\left(m_{6}, a_{2}\right)
\end{aligned}
$$

MI Attack, B=2

(1) Query $f^{-1}(0, i)$ for different i
(2) For challenge salt a, query $f(j, a)$ for different j
If two queries in (2) hits two salts visited in (1),

$$
\begin{aligned}
f^{-1}\left(0, i_{1}\right) & =\left(m_{1}, a_{1}\right) \\
f\left(m_{3}, a\right) & =\left(m_{5}, a_{1}\right) \\
f^{-1}\left(0, i_{2}\right) & =\left(m_{2}, a_{2}\right) \\
f\left(m_{4}, a\right) & =\left(m_{6}, a_{2}\right)
\end{aligned}
$$

then we have found valid collisions on challenge salt a $\left(m_{3} \mid m_{5} \oplus m_{1}\right),\left(m_{4} \mid m_{6} \oplus m_{2}\right)$

MI Attack, B=2

Each round: wins if we hit two old salts within $T / 2$ queries \# of different salts in (1):

$$
\tilde{\Omega}(i T)
$$

Winning Probability this round:

$$
\tilde{O}\left(\left(i T^{2} / C\right)^{2}\right)
$$

MI Attack, B=2

Each round: wins if we hit two old salts within $T / 2$ queries \# of different salts in (1):

$$
\tilde{\Omega}(i T)
$$

Winning Probability this round:

$$
\tilde{O}\left(\left(i T^{2} / C\right)^{2}\right)
$$

Winning Probability for MI-game:

$$
\left(\tilde{O}\left(S^{2} T^{4} / C^{2}\right)\right)^{S}
$$

MI Attack, B=2

Each round: wins if we hit two old salts within $T / 2$ queries \# of different salts in (1):

$$
\tilde{\Omega}(i T)
$$

Winning Probability this round:

$$
\tilde{O}\left(\left(i T^{2} / C\right)^{2}\right)
$$

Winning Probability for MI-game:

$$
\left(\tilde{O}\left(S^{2} T^{4} / C^{2}\right)\right)^{S}
$$

Matches current upper bound (proved by MI)

MI Attacks

MI Attack, B=3

(1) Query out collisions at some salts a (via birthday attack)
(2) Query $f^{-1}(*, a)$ on these salts
(3) Query $f\left(*, a_{i}\right)$ for challenge salt a_{i}

MI Attack, B=3

(c) 3-Block collision attack
(1) Query out collisions at some salts a (via birthday attack)
(2) Query $f^{-1}(*, a)$ on these salts
(3) Query $f\left(*, a_{i}\right)$ for challenge salt a_{i}

Wins if one query in (3) hits one salt in step (2)
Winning Probability for MI-game:

$$
\left(\tilde{O}\left(S T^{2} / C\right)\right)^{S}
$$

MI Attack, B=3

(c) 3-Block collision attack
(1) Query out collisions at some salts a (via birthday attack)
(2) Query $f^{-1}(*, a)$ on these salts
(3) Query $f\left(*, a_{i}\right)$ for challenge salt a_{i}

Wins if one query in (3) hits one salt in step (2)
Winning Probability for MI-game:

$$
\left(\tilde{O}\left(S T^{2} / C\right)\right)^{S}
$$

Matches current upper bound (proved by MI)

Recap

Better bounds for $B=1$, Showed limitation of $M I$

Message Length	Upper Bound Tight?	Better bounds for MI?
$B=1$	Almost	\times
$B=2$	\times	\times
$3 \leq B \leq T$	\times	\times
$B>T$	\checkmark	-

Open problems:

- Tight bounds (even for $B=2$)?
- Better methods than MI?
- Better attacks?

