Time-Space Tradeoff for Collision Finding in Sponge Functions

Xiaoqi Duan, Akshima, Siyao Guo, Qipeng Liu

ETH Zürich; NYU Shanghai; UC San Diego

November 30, 2023

SHA-2: Merkle-Damgård Hash Functions $f : [N] \times [M] \rightarrow [N]$ is a random function

SHA-2: Merkle-Damgård Hash Functions $f : [N] \times [M] \rightarrow [N]$ is a random function SHA-3: Sponge Hash Functions $f : [C] \times [R] \rightarrow [C] \times [R]$ is a random permutation

SHA-2: Merkle-Damgård Hash Functions $f : [N] \times [M] \rightarrow [N]$ is a random function

SHA-3: Sponge Hash Functions

 $f: [C] \times [R] \rightarrow [C] \times [R]$ is a random permutation Can access both f and f^{-1}

SHA-2: Merkle-Damgård Hash Functions $f: [N] \times [M] \rightarrow [N]$ is a random function SHA-3: Sponge Hash Functions $f: [C] \times [R] \rightarrow [C] \times [R]$ is a random permutation Can access both f and f^{-1}

Target: Hard to find collisions

SHA-2: Merkle-Damgård Hash Functions $f : [N] \times [M] \rightarrow [N]$ is a random function SHA-3: Sponge Hash Functions $f : [C] \times [R] \rightarrow [C] \times [R]$ is a random permutation

Can access both f and f^{-1}

November 30, 2023

Target: Hard to find collisions SHA-3 is less secure?

SHA-2: Merkle-Damgård Hash Functions $f : [N] \times [M] \rightarrow [N]$ is a random function SHA-3: Sponge Hash Functions $f : [C] \times [R] \rightarrow [C] \times [R]$ is a random permutation

Can access both f and f^{-1}

November 30, 2023

Target: Hard to find collisions SHA-3 is less secure?

Intuition: Extra knowledge about f, e.g. backdoors?

Intuition: Extra knowledge about f, e.g. backdoors? Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Intuition: Extra knowledge about f, e.g. backdoors? Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Trivial birthday attack advantage: T^2/N (MD) or T^2/R (Sponge)

Intuition: Extra knowledge about f, e.g. backdoors? Setting:

- S-bit information about f
- T queries to f (or f^{-1} for sponge)
- Output collision

Trivial birthday attack advantage: T^2/N (MD) or T^2/R (Sponge) Exist non-trivial attacks!

3/24

Short Collision Finding in Merkel Damgård [CDGS18,ACDW20,GK22,AGL22]

Message Length	Best Known Attack
B=1	$S/N + T^2/N$
B=2	$ST/N + T^2/N$
$3 \le B \le T$	$STB/N + T^2/N$
B > T	ST^2/N

Message Length	Known Attack (MD)	Known Attack (Sponge)
B=1	$S/N + T^2/N$	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$
		$+S/C+T^2/R$
B=2	$ST/N + T^2/N$	$ST/C + T^2/\min(C,R)$
$3 \le B \le T$	$STB/N + T^2/N$	$STB/C + T^2/\min(C, R)$
B > T	ST^2/N	$ST^2/C + T^2/R$

Better attacks than MD even when B = 1

Message Length	Known Attack (MD)	Known Attack (Sponge)
B=1	$S/N + T^2/N$	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$
		$+S/C + T^2/R$
B=2	$ST/N + T^2/N$	$ST/C + T^2/\min(C,R)$
$3 \le B \le T$	$STB/N + T^2/N$	$STB/C + T^2/\min(C, R)$
B > T	ST^2/N	$ST^2/C + T^2/R$

Better attacks than MD even when B = 1Utilizes the inverse oracle What about security upper bounds?

6/24

What about security upper bounds?

Old Techniques [DGK17,CDGS18]: presampling, compression

What about security upper bounds?

Old Techniques [DGK17,CDGS18]: presampling, compression

Multi-Instance Games (MI): A recent technique for proving security bounds for preprocessing attacks [IK10,CGLQ20,ACDW20,AGL22,FGK22]

Upper Bounds in Merkel Damgård [ACDW20,GK22,AGL22]

Message Length	Best Known Attack	Upper Bound Tight?
B=1	$S/N + T^2/N$	\checkmark
<i>B</i> = 2	$ST/N + T^2/N$	\checkmark
$3 \le B \le T$	$STB/N + T^2/N$	×
B > T	ST^2/N	\checkmark

MI works pretty well here

Message Length	Best Known Attack	Upper Bound Tight?
B=1	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$	×
	$+S/C + T^2/R$	
<i>B</i> = 2	$ST/C + T^2/\min(C, R)$	×
$3 \le B \le T$	$STB/C + T^2/\min(C,R)$	×
B > T	$ST^2/C + T^2/R$	\checkmark

Message Length	Best Known Attack	Upper Bound Tight?
B=1	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$	×
	$+S/C + T^2/R$	
<i>B</i> = 2	$ST/C + T^2/\min(C, R)$	×
$3 \le B \le T$	$STB/C + T^2/\min(C,R)$	×
B > T	$ST^2/C + T^2/R$	\checkmark

What happens at sponge?

8/24

Message Length	Best Known Attack	Upper Bound
	$((CT/C)^2 (C^2T/C^2)^{\frac{2}{3}})$	$CT/C + T^2/D$
B = 1	$\min((SI/C)^{-}, (S^{-}I/C^{-})^{3})$	$SI/C + I^{-}/R$
	$+S/C + T^{2}/R$	
<i>B</i> = 2	$ST/C + T^2/\min(C, R)$	$ST/C + S^2T^4/C^2$
		$+T^{2}/\min(C,R)$
$3 \le B \ge T$	$STB/C + T^2/\min(C, R)$	$ST^{2}/C + T^{2}/R$
B > T	$ST^2/C + T^2/R$	$ST^{2}/C + T^{2}/R$
14/1	<u> </u>	

What happens at sponge?

Message Length	Best Known Attack	Upper Bound
B=1	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$	$ST/C + T^2/R$
	$+S/C+T^2/R$	
<i>B</i> = 2	$ST/C + T^2/\min(C,R)$	$ST/C + S^2T^4/C^2$
		$+T^2/\min(C,R)$
$3 \le B \ge T$	$STB/C + T^2/\min(C,R)$	$ST^{2}/C + T^{2}/R$
B > T	$ST^2/C + T^2/R$	$ST^{2}/C + T^{2}/R$

What happens at sponge?

Can we prove better bounds (via MI)?

Message Length	Best Known Attack	Upper Bound Tight?
B = 1	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$	Almost
	$+S/C+T^2/R$	
<i>B</i> = 2	$ST/C + T^2/\min(C,R)$	×
$3 \le B \le T$	$STB/C + T^2/\min(C, R)$	×
B > T	$ST^2/C + T^2/R$	\checkmark

Better bounds for B = 1, Simpler proofs for B = 2

Message Length	Upper Bound Tight?	Better bounds for MI?
B=1	Almost	×
<i>B</i> = 2	×	×
$3 \le B \le T$	×	×
B > T	\checkmark	-

Limit of MI games

Advantages between MI and AI adversaries [AGL22]

We can reduce an AI adversary with success probability 2ϵ to an MI adversary with probability $\tilde{O}(\epsilon^{S})$.

Advantages between MI and AI adversaries [AGL22]

We can reduce an AI adversary with success probability 2ϵ to an MI adversary with probability $\tilde{O}(\epsilon^{S})$.

Proof Idea. Guess the S-bit advice and run AI with that advice each round. The 2^{-S} guessing probability will be amortized into ϵ^{S} .

Repeat S times:

Multi-Instance Games

Multi-Instance Games

Multi-Instance Games

Something to mention:

- No advice string
- *f* doesn't change within rounds
- Has "memory" of previous rounds
- Need to win all S rounds

Advantages of MI game:

• No advice bits

Advantages of MI game:

- No advice bits
- Ability to use lazy sampling and other techniques

Advantages of MI game:

- No advice bits
- Ability to use lazy sampling and other techniques

Often easier to find upper bounds

	Upper Bound	Known Attack
B = 1	$S^2 T^2 / C^2 + T^2 / R$	$\min((ST/C)^2, (S^2T/C^2)^{\frac{2}{3}})$
	+S/C+T/C	$+S/C+T^2/R$
<i>B</i> = 2	$ST/C + S^2T^4/C^2$	$ST/C + T^2/\min(C,R)$
	$+T^2/\min(C,R)$	
$B \ge 3$	$ST^{2}/C + T^{2}/R$	$STB/C + T^2/\min(C,R)$

Our proof uses Multi-Instance Games technique

and highly non-trivial compression argument (please refer to original paper)

Showed limitations of MI Techniques:

	Upper Bound Given by MI	Best Attack in MI
B=1	$(\tilde{O}(S^2T^2/C^2+T^2/R+S/C+T/C))^S$	$(\tilde{\Omega}(S^2T^2/C^2))^S$
<i>B</i> = 2	$(\tilde{O}(ST/C+S^2T^4/C^2+T^2/\min(C,R)))^S$	$(\tilde{\Omega}(S^2T^4/C^2))^S$
$B \ge 3$	$(ilde{O}(ST^2/C+T^2/R))^S$	$(ilde{\Omega}(ST^2/C))^S$

Showed limitations of MI Techniques:

	Upper Bound Given by MI	Best Attack in MI
B=1	$(\tilde{O}(S^2T^2/C^2+T^2/R+S/C+T/C))^S$	$(\tilde{\Omega}(S^2T^2/C^2))^S$
<i>B</i> = 2	$(\tilde{O}(ST/C+S^2T^4/C^2+T^2/\min(C,R)))^S$	$(\tilde{\Omega}(S^2T^4/C^2))^S$
$B \ge 3$	$(ilde{O}(ST^2/C+T^2/R))^S$	$(ilde{\Omega}(ST^2/C))^S$

It means we can't use MI to further bridge the gaps.

Input
$$m = m_1 | | ... | | m_B, m_i \in [R]$$

Sponge^f(IV, m) := x

where $f: [R] \times [C] \rightarrow [R] \times [C]$ is a permutation

(1) Query $f^{-1}(0, i)$ for different *i*

(1) Query $f^{-1}(0, i)$ for different i(2) For challenge salt a, query f(j, a) for different j

20 / 24

(1) Query f⁻¹(0, i) for different i
(2) For challenge salt a, query f(j, a) for different j
If two queries in (2) hits two salts visited in (1),

$$f^{-1}(0, i_1) = (m_1, a_1)$$

$$f(m_3, a) = (m_5, a_1)$$

$$f^{-1}(0, i_2) = (m_2, a_2)$$

$$f(m_4, a) = (m_6, a_2)$$

(1) Query f⁻¹(0, i) for different i
(2) For challenge salt a, query f(j, a) for different j
If two queries in (2) hits two salts visited in (1),

$$f^{-1}(0, i_1) = (m_1, a_1)$$

$$f(m_3, a) = (m_5, a_1)$$

$$f^{-1}(0, i_2) = (m_2, a_2)$$

$$f(m_4, a) = (m_6, a_2)$$

then we have found valid collisions on challenge salt a $(m_3|m_5 \oplus m_1), (m_4|m_6 \oplus m_2)$

Each round: wins if we hit two old salts within T/2 queries # of different salts in (1): $\tilde{\Omega}(iT)$

Winning Probability this round:

 $\tilde{O}((iT^2/C)^2)$

Each round: wins if we hit two old salts within T/2 queries # of different salts in (1): $\tilde{\Omega}(iT)$

Winning Probability this round:

 $\tilde{O}((iT^2/C)^2)$

Winning Probability for MI-game:

 $(\tilde{O}(S^2T^4/C^2))^S$

21/24

Each round: wins if we hit two old salts within T/2 queries # of different salts in (1): $\tilde{\Omega}(iT)$

Winning Probability this round:

 $\tilde{O}((iT^2/C)^2)$

Winning Probability for MI-game:

 $(\tilde{O}(S^2T^4/C^2))^S$

Matches current upper bound (proved by MI)

November 30, 2023

2 / 24

Query out collisions at some salts a (via birthday attack)
 Query f⁻¹(*, a) on these salts
 Query f(*, a_i) for challenge salt a_i

(c) 3-Block collision attack

(1) Query out collisions at some salts a (via birthday attack) (2) Query $f^{-1}(*, a)$ on these salts (3) Query $f(*, a_i)$ for challenge salt a_i

Wins if one query in (3) hits one salt in step (2)

Winning Probability for MI-game:

 $(\tilde{O}(ST^2/C))^S$

3-Block collision attack (c)

(1) Query out collisions at some salts a (via birthday attack)
 (2) Query f⁻¹(*, a) on these salts
 (3) Query f(*, a_i) for challenge salt a_i

Wins if one query in (3) hits one salt in step (2)

Winning Probability for MI-game:

 $(\tilde{O}(ST^2/C))^S$

Matches current upper bound (proved by MI)

Better bounds for B = 1, Showed limitation of MI

Message Length	Upper Bound Tight?	Better bounds for MI?
B=1	Almost	×
<i>B</i> = 2	×	×
$3 \le B \le T$	×	×
B > T	\checkmark	-

Open problems:

- Tight bounds (even for B = 2)?
- Better methods than MI?
- Better attacks?