On the Cost of Post-Compromise Security in Concurrent Continuous Group-Key Agreement

Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez, Krzysztof Pietrzak

ISTA, Austria

TCC 2023

- Messaging apps: WhatsApp, Signal...
- Asynchronous and long lived sessions.

э

(日)

Continuous Group Key Agreement (CGKA)

 A CGKA is a protocol that allows a group of users to maintain a shared key and update it.

Continuous Group Key Agreement (CGKA)

- A CGKA is a protocol that allows a group of users to maintain a shared key and update it.
- Users update the key material to achieve Post-Compromise Security (PCS).
- Protocols: ART [CCG⁺18], TreeKEM [BBR18], Causal TreeKEM [Mat19], rTreeKEM [ACDT20], Tainted TreeKEM [KPPW⁺21], decentralized CGKA [WKHB21], CoCoA [AAN⁺22a], DeCAF [AAN⁺22b].

What happens when several users want to do an update in round t?

イロト イポト イヨト イヨト

- What happens when several users want to do an update in round t?
- Propose and Commit (P&C) makes future updates inefficient.
 Worst-case total upload cost n².

ヘロト ヘロト ヘビト ヘビト

- What happens when several users want to do an update in round t?
- Propose and Commit (P&C) makes future updates inefficient.
 Worst-case total upload cost n².
- Worst-case lower bound for 2-PCS [BDR20] of n² (in a symbolic model).

- What happens when several users want to do an update in round t?
- For 2-PCS, optimal cost is n^2 .

- What happens when several users want to do an update in round t?
- For 2-PCS, optimal cost is n^2 .
- How about delaying PCS? CoCoA [AAN⁺22a] achieves PCS in log(n) rounds with total upload cost n log² n.

- What happens when several users want to do an update in round t?
- For 2-PCS, optimal cost is n^2 .
- How about delaying PCS? CoCoA [AAN⁺22a] achieves PCS in log(n) rounds with total upload cost n log² n.
- This work: Lower Bound for concurrency in k-PCS and almost matching upper bound. Applies to a large class of protocols.

The Combinatorial Model in Pictures

The Combinatorial Model in Pictures

æ

ヘロト 人間ト 人間ト 人間ト

The Combinatorial Model in Pictures

 K_2 R

Lower Bound in the Combinatorial Model

$$t = 0$$

$$Get \operatorname{Recudy}^{n} \forall hu_{i} |_{t=1}^{t_{e}} \qquad \exists \{u_{t_{e}} + t\}_{t=1}^{(i+\epsilon)k} \quad (i+\epsilon)k \text{ rounds}$$

$$Tota | Update \ Ost = -\Omega\left(k n^{4+\frac{4}{k}} / \log k\right)$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Theorem (Informal Statement)

Let $t_c \in \mathbb{N}$ and $0 < \varepsilon < 2/5$ be a constant such that $(1 + \varepsilon)k \in \mathbb{N}$. For every sequence of updates $(U_t)_{t=1}^{t_c}$, there exist a choice of C_{t_c} and a sequence of updates $(U_{t_c+t})_{t=1}^{(1+\varepsilon)k}$ such that

$$\sum_{t=1}^{(1+\varepsilon)k} \operatorname{Cost}(U_{t_c+t}) = \Omega(k \cdot n^{1+1/(k-1)}/\log(k)) \ .$$

And the same lower bound holds in the symbolic model for any correct and *k*-PCS secure CGKA protocol.

Upper Bounds

■ CoCoALight and CoCoALight+ based on CoCoA [AAN⁺22a].

Lower Bounds

[BDR20]	<i>k</i> = 2	$\Omega(n^2)$
This work	<i>k</i> = 2	$\Omega(n^2)$
	$k = \log n$	$\Omega(n \log n / \log \log n)$
	k	$\Omega(k \cdot n^{1+1/(k-1)}/\log(k))$
Upper Bounds		
P&C	<i>k</i> = 2	$O(n^2)$
CoCoA [AAN ⁺ 22a]	$k = \log n$	$O(n \log^2 n)$
This work: CoCoALight	$k = \log n$	$O(n \log n)$

