

A New Frontier in Public-Key Authenticated Encryption

Shashank Agrawal Shweta Agrawal Manoj Prabhakaran Coin-Base IIT Madras IIT Bombay

CASE

Rajeev Raghunath IIT Bombay

Jayesh Singla **IIT Bombay**

TCC 2023

What is CASE

Active Agents Framework

A CASE construction

∧Sig-Key -Key

Goal: A public-key authenticated encryption scheme that is as idealised as possible! Improve on Signcryption in terms of security

Commands

Handles to the tokens

IDEALISATION

Commands

Handles to tokens

Commands

Handles to the tokens

Transfer a handle to Adv

IDEALISATION

Commands

Handles to tokens

Fresh handle to the token

Commands

Handles to the tokens

Transfer a handle to Adv

Fresh handle to the token

IDEALISATION

Handles to tokens

Transfer a handle

Fresh handle to the token

e.g., create ENC/DEC or SIG/VER keys

A Handles to the tokens

e.g., create a case-packet for m using ENC & SIG handles h₁,h₂

Handles to the tokens

e.g., open handle h₁ (case-packet) using handles h₂, h₃ (DEC & VER)

Message m

Transfer a handle to Adv

Fresh handle to the token

IDEALISATION

Handles to tokens

Transfer a handle

Fresh handle to the token

Several implied requirements:

- Cannot construct a case-packet that is decrypted by a Dec-Key unless Enc-Key given
- Without Dec-Key cannot tell who the sender or recipient is, nor what the message is
- Even with Dec-Key, without Ver-Key cannot tell if two case-packets have the same signer
- - Two case-packets generated independently are unlikely to be equal
 - One case-packet can be decrypted/verifed by at most one dec-key/ver-key

Even malicious objects (keys or case-packets) accepted from the adversary, behave ideally:

Completely Anonymous Signed Encryption Chosen Objects Attack (COA) Security

- 1. Correctness of <u>accepted</u> objects
- 2. Total Hiding (a la Anonymous CCA secure encryption)
 - \bullet accepted).
- 3. Sender Anonymity
 - challenge case-packet). Enc-Key can be malicious.
- Strong Unforgeability: Without Sig-Key, can't produce a new case-packet that verifies
- 5. Unpredictability: Case-packets have high min-entropy, even if Enc-Key/Sig-Key malicious.

Can't tell between case-packets prepared using (m₀,Sig-Key₀) and (m₁,Sig-Key₁), with only blackbox access to decryption oracle (except on the challenge case-packet). Sig-Keys can be malicious (but

• Can't tell between case-packets prepared using (m₀,Sig-Key₀) and (m₁,Sig-Key₁), with only blackbox access to oracles for encasement with SK₀ and SK₁ and verification with VK₀ and VK₁ (except on the

6. Existential Consistency: Uniqueness of secret-keys/message behind public-keys/case-packet

Is COA security comprehensive?

What is CASE

COA Security

Active Agents Framework

A CASE construction

A REAL/IDEAL Paradigm

• Ideal CASE is easy to define

A REAL/IDEAL Paradigm

• Ideal CASE is easy to define

What does it mean to be like Ideal?

Simulation-based definitions turn out to be impossible!

What does it mean to be like Ideal?

Indistinguishability Preserving (IND-PRE) security: If Test(0) vs. Test(1) is indistinguishable in the ideal execution, it should remain so in the real execution

What does it mean to be *like Ideal?*

Indistinguishability Preserving (IND-PRE) security: If Test(0) vs. Test(1) is indistinguishable in the ideal execution, it should remain so in the real execution

- From the Cryptographic Agents Framework [AAP15, APY16]
- New in Active Agents: allow adversary to transfer handles to Test

What does it mean to be *like Ideal?*

Indistinguishability Preserving (IND-PRE) security: If Test(0) vs. Test(1) is indistinguishable in the ideal execution, it should remain so in the real execution

• Still impossible! Relax a little:

- Limit to Δ -Tests which use the Test-bit only to decide what is transferred, and otherwise have no secrets
- In the IDEAL, restrict to statistical indistinguishability

What does it mean to be like Ideal?

$ON \Delta$ -s-IND-PRE ω

Indistinguishability Preserving (IND-PRE) security: If Test(0) vs. Test(1) is indistinguishable in the ideal execution, it should remain so in the real execution

• Still impossible! Relax a little:

- Limit to Δ -Tests which use the Test-bit only to decide what is transferred, and otherwise have no secrets
- In the IDEAL, restrict to statistical indistinguishability

What does it mean to be *like Ideal?*

$ON \Delta$ -s-IND-PRE CO

- - e.g., for PKE, subsumes CCA, Anon-CCA, etc.
- Not over-fitting to a particular primitive like encryption or signature

• Covers all reasonable (i.e., ideally hiding) indistinguishability experiments at once

CASE in the Active Agents Framework

- 1. Correctness
- 2. Total Hiding
- 3. Sender Anonymity
- 4. Strong Unforgeability
- 5. Unpredictability
- 6. Existential Consistency

Main Theorem

COA-secure CASE $\Rightarrow A$ -s-IND-PRE secure CASE

Is COA security comprehensive?

What is CASE

COA Security

Active AgentsFrameworkΔ-s-IND-PRE Security

Is it achievable?

A CASE construction

Quasi-Deterministic Anon-CCA PKE

Quasi-Deterministic Anon-CCA PKE

> **Cramer-Shoup** Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m;r) = (\tau,c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m;r) = (\tau,c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m;r) = (\tau,c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

Existentially Consistent Anonymous Signatures

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m;r) = (\tau,c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

Existentially Consistent Anonymous Signatures

COA-secure CASE

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m; r) = (\tau, c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

By adding Existential Consistency

Enc-Key has a *fully binding* commitment to Dec-Key

Ciphertext has a fully binding commitment to Enc-Key which can be opened on decrypting

Existentially Consistent Anonymous Signatures

COA-secure CASE

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m; r) = (\tau, c)$ where $\tau = \text{Encodepk}(r)$ fixes r

By adding Existential Consistency

Enc-Key has a *fully binding* commitment to Dec-Key

Ciphertext has a fully binding commitment to Enc-Key which can be opened on decrypting

Existentially Consistent Anonymous Signatures

COA-secure CASE

By adding an encryption layer and **Existential Consistency**

Use a COA-secure QD-PKE whose Dec-Key in Ver-Key

Sign m and encoding of randomness in the PKE

Encrypt the signature. Include a commitment to Ver-Key which can be opened on decrypting.

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m; r) = (\tau, c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

By adding Existential Consistency

Enc-Key has a *fully binding* commitment to Dec-Key

Ciphertext has a fully binding commitment to Enc-Key which can be opened on decrypting

Existentially Consistent Anonymous Signatures

COA-secure CASE

By adding an encryption layer and **Existential Consistency**

Use a COA-secure QD-PKE whose Dec-Key in Ver-Key

Sign m and encoding of randomness in the PKE

Encrypt the signature. Include a commitment to Ver-Key which can be opened on decrypting.

Start Encrypting-Sign-**Finish Encrypting**

Sign using ECAS, encrypt using COA QD-PKE

Sign m and encoding of randomness in the COA QD-PKE

Then finish encrypting m and signature

Quasi-Deterministic Anon-CCA PKE

COA-secure Quasi-Deterministic PKE

Cramer-Shoup Encryption (Based on DDH)

QD property: $\mathsf{Enc}_{\mathsf{PK}}(m; r) = (\tau, c)$ where $\tau = \text{Encode}_{PK}(r)$ fixes r

By adding Existential Consistency

Enc-Key has a fully binding commitment to Dec-Key

Ciphertext has a fully binding commitment to Enc-Key which can be opened on decrypting

Existentially Consistent Anonymous Signatures

COA-secure CASE

By adding an encryption layer and **Existential Consistency**

Use a COA-secure QD-PKE whose Dec-Key in Ver-Key

Sign m and encoding of randomness in the PKE

Encrypt the signature. Include a commitment to Ver-Key which can be opened on decrypting.

Start Encrypting-Sign-**Finish Encrypting**

Sign using ECAS, encrypt using COA QD-PKE

Sign m and encoding of randomness in the COA QD-PKE

Then finish encrypting m and signature

Is COA security comprehensive?

What is CASE

COA Security

Active Agents Framework **Δ-s-IND-PRE Security**

Is it achievable?

A CASE construction

Quite practical!

Thank You!

