Simplex Consensus A Fast and Simple Consensus Protocol

Benjamin Chan

Cornell Tech

Joint work with Rafael Pass

This talk: A consensus protocol with the easiest security proofs* best latency of all the protocols we've seen thus far. (partial synchronous, f < n/3, PKI) *This talk*: A consensus protocol with the easiest security proofs* best latency of all the protocols we've seen thus far. (partial synchronous, f < n/3, PKI) Key primitive for: Blockchains (Proof-of-Stake) MPC (broadcast) This talk: A consensus protocol with the easiest security proofs* best latency of all the protocols we've seen thus far. (partial synchronous, f < n/3, PKI)

*subjective

*subjective

*subjective

Our setting: the consensus problem players receive txs from the 1. environment over time Different players may see different orders of txs! tx

1.

2.

2. players continuously output a log of "finalized txs"

Consistency

(all players output the same ordering of finalized txs)

Liveness

(transactions eventually get finalized)

Our Work

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous "random-leader" consensus protocol for f < n/3 static corruptions, and:

- Optimistic confirmation time of 3δ (excluding block time)
- Optimistic block time of 2ð
- Expected pessimistic confirmation time* of $3.5\delta + 1.5\Delta$
- Worst-case confirmation time of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$
- Easiest security proofs (in our eyes)

δ: unknown, true message delay during periods of synchrony Δ: known, public upper bound on δ

Get efficient communication via "sortition" [CM18]

Comparisons

Theoretical latency of protocols that support random leaders

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
$\frac{\text{ICC}}{[\text{CDH}^+22]}$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	78	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Table 1: Latency of Popular Consensus Protocols (Random Leaders)

Comparisons

Theoretical latency of protocols that support random leaders

Fun note: all protocols differ only slightly in protocol description

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Table 1: Latency of Popular Consensus Protocols (Random Leaders)

Protocol Description

Key data structure: **blockchain**

each block of height h is a tuple of the form

 $\mathbf{b}_{\mathbf{h}} = (\mathbf{h}, hash of a parent chain, txs)$

Key data structure: **blockchain**

each block of height h is a tuple of the form

Key data structure: blockchain

each block of height **h** is a tuple of the form

Key data structure: blockchain

each block of height h is a tuple of the form

We also allow the blockchain to contain "dummy blocks"

a dummy block of height h is the tuple

$$\perp_{h} = (h, \perp, \perp)$$

We also allow the blockchain to contain "dummy blocks"

(again, each block that is not a dummy block must extend a parent chain)

We also allow the blockchain to contain "dummy blocks"

$$b_{h} = (h, Hash(b_{1} \dots b_{h-1}), txs)$$

We also allow the blockchain to contain "dummy blocks"

(again, each block that is not a dummy block must extend a parent chain)

 $\mathbf{b}_{h} = (\mathbf{h}, Hash(\mathbf{b}_{1} \dots \mathbf{b}_{h-1}), \mathbf{txs})$

We also allow the blockchain to contain "dummy blocks"

(again, each block that is not a dummy blo must extend a parent chain)

b_h = (h, *Hash*(**b**₁ ... **b**_{h-1}), **txs**

Preliminaries: voting for blocks

A player **i** votes for a block **b**_h by signing the message "**vote b**_h"

Preliminaries: notarized blocks

Key data structure: notarized blocks

a block is notarized in my view if I've seen

> 2n/3 votes for it

(i.e. signatures from > 2n/3 different players)

Preliminaries: notarized blocks

Dummy blocks can also be notarized.

a block is notarized in my view if I've seen

> 2n/3 votes for it

(i.e. signatures from > 2n/3 different players)

Preliminaries: Notarized blockchains

Key data structure: notarized blockchain

every block of the chain is notarized (except genesis)

Preliminaries: "Quorum intersection"

If honest players only vote for one of **b** or **b**', then it cannot be that both **2n/3** players voted for **b**, and **2n/3** players voted for **b**'.

suppose each honest player only votes for one corrupt players can always vote for both

Preliminaries: "Quorum intersection"

If honest players only vote for one of **b** or **b**', then it cannot be that both 2n/3 players voted for b, and 2n/3 players voted for b'.

vote for both

n – **f** votes

2f votes

Preliminaries: "Quorum intersection"

If honest players only vote for one of **b** or **b**', then it cannot be that both **2n/3** players voted for **b**, and **2n/3** players voted for **b**'.

The Simplex Consensus Protocol

Proceed in iterations **h** = 1, 2, 3, ...

In each iteration **h**, collectively try to build a notarized block of height **h**.

The Simplex Consensus Protocol

Proceed in iterations **h** = 1, 2, 3, ...

In each iteration **h**, collectively try to build a notarized block of height **h**.

iteration 1

Proceed in iterations **h** = 1, 2, 3, ...

In each iteration h, collectively try to build a notarized block of height h.

Proceed in iterations **h** = 1, 2, 3, ...

In each iteration **h**, collectively try to build a notarized block of height **h**.

Proceed in iterations **h** = 1, 2, 3, ...

Move to the next iteration when I've seen a notarized blockchain of length h

Proceed in iterations **h** = 1, 2, 3, ...

Move to the next iteration when I've seen a notarized blockchain of length **h** (and send this notarized blockchain to everyone else).

 iteration 1
 iteration 2
 iteration 3

 Genesis
 Image: Second second

Each iteration has a leader player chosen randomly ahead of time.

Specifically, the leader of iteration $\mathbf{h} = H^*(\mathbf{h}) \mod \mathbf{n}$, where H^* is a random oracle.

Each player i, on entering iteration h

 If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".

Each player i, on entering iteration h

 If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".

Each player **i**, on entering iteration **h**

- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h".

Each player i, on entering iteration h

- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h".

If the network is good and the leader is honest, the block proposal will get notarized!

Each player **i**, on entering iteration **h**

- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h". iteration 3

At most one block proposal from the leader can be notarized in honest view

Handling faulty iterations

Scenario 1: if the network drops all messages, or leader crashed, maybe players never see a block proposal for that iteration...

Handling faulty iterations

Scenario 2: a faulty leader sends different proposals to different players, and honest players split their vote, so no block proposal gets notarized...

If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_h ".

Recall: Δ is a public parameter that upper bounds message delay after GST.

If **3** Δ time has passed since player **i** has entered iteration **h**, and if **i** still has not entered iteration **h**+**1**, player **i** sends to everyone a signed message "vote \perp_h ".

Recall: Δ is a public parameter that upper bounds message delay after GST.

If **3** Δ time has passed since player **i** has entered iteration **h**, and if **i** still has not entered iteration **h**+**1**, player **i** sends to everyone a signed message "vote \perp_h ".

Recall: Δ is a public parameter that upper bounds message delay after GST.

If **3** Δ time has passed since player **i** has entered iteration **h**, and if **i** still has not entered iteration **h**+**1**, player **i** sends to everyone a signed message "vote \perp_h ".

If **3** Δ time has passed since player **i** has entered iteration **h**, and if **i** still has not entered iteration **h**+**1**, player **i** sends to everyone a signed message "vote \perp_h ".

iteration 3

On seeing notarized dummy block, can now move on to the next iteration!

If **3** Δ time has passed since player **i** has entered iteration **h**, and if **i** still has not entered iteration **h**+**1**, player **i** sends to everyone a signed message "vote \perp_h ".

On seeing notarized dummy block, can now move on to the next iteration!

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be both

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be both

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

Due to faults, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

in the view of honest players.

The next leader can extend either notarized chain

Due to faults, there may be *both*

- a notarized block proposal (for h), and
- a notarized dummy block L

in the view of honest players.

The next leader can extend either notarized chain

Due to faults, there may be *both*

- a notarized block proposal (for h), and
- a notarized dummy block L

in the view of honest players.

For agreement, need to decide on a single block at each height **h**

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

On seeing **2n/3** "finalize h" messages, a player **i** finalizes any notarized blockchain of length **h** that it sees (and the txs inside).

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

On seeing **2n/3** "**finalize h**" messages, a player **i** finalizes any notarized blockchain of length **h** that it sees (and the txs inside).

If I see **2n/3** "**finalize h**" messages, the dummy block of height **h** cannot be notarized!

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

On seeing **2n/3** "finalize h" messages, a player **i** finalizes any notarized blockchain of length **h** that it sees (and the txs inside).

Security Proofs

Consistency

Thm: Let Alice and Bob be two honest players.
Suppose Alice outputs LOG, and Bob outputs LOG', s.t |LOG| ≤|LOG'|.
Then, LOG is a prefix (or equal to) LOG'.

Consistency

Proof: Consider Alice's chain **LOG**, which is the shorter one; let its length be **h**

Since **LOG** is finalized by Alice, Alice sees **2n/3** "finalize h" messages.

Claim: there can be only one notarized blockchain of length **h**, across all honest views

Since **LOG** is finalized by Alice, Alice sees **2n/3** "finalize h" messages.

Claim: there can be only one notarized blockchain of length h, across all honest views

Claim: At most one block proposal from the leader of **h** can be notarized in honest view

iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

Claim: At most one block proposal from the leader of **h** can be notarized in honest view

iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

Claim: At most one block proposal from the leader of **h** can be notarized in honest view

iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

Claim: Since Alice saw **2n/3 "finalize h"** messages, the dummy block of height **h** cannot be notarized in any honest view.

Proof: Each honest player either votes **finalize** or for \bot_h . Apply quorum intersection.

Consistency iteration h Claim: At most one block proposal from the leader of **h** can be notarized in honest view height height Genesis ?? block h-1 chain. Claim: Since Alice saw 2n/3 "finalize h" messages, the dummy block of height **h** cannot be notarized

in any honest view.

Bob's chain (by virtue of being notarized) must extend Alice's

Claim: if the network is good (after **GST**), an honest leader can always get its block proposal notarized, and then finalized.

Claim: if the network is good (after **GST**), an honest leader can always get its block proposal notarized, and then finalized.

Fact: if some honest player enters iteration *h* by time *t*, if t > GST, then every honest player enters iteration *h* by time $t + \delta$.

When an honest player enters an iteration *h*, it sends its notarized blockchain of length *h-1* to everyone else.

Claim: if the network is good (after **GST**), an honest leader can always get its block proposal notarized, and then finalized.

time t

•		
Leader enters		
iteration h and		
proposes a new block		
b _h extending a		
nötarized chain		
b ₁ b _{h-1} .		

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t

•		
Leader enters		
iteration h and		
proposes a new block		
b _h extending a		
notarized chain		
b ₁ b _{h-1} .		

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t	time $t + \delta$
Leader enters iteration h and proposes a new bloc b_h extending a notarized chain $b_1 \dots b_{h-1}$.	Every honest player enters iteration <i>h</i> enters iteration <i>h</i> kk and sees the proposal. Either everyone sends "vote b _h ", or someone already entered iteration h+1.

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t	time <i>t + δ</i>	time <i>t + 2δ</i>	
•	•	•	
Leader enters iteration <i>h</i> and proposes a new block b _h extending a	Every honest player enters iteration h k and sees the proposal.	Every honest player sees some notarized block of height h .	
b ₁ b _{h-1} .	Either everyone sen " vote b_h ", or someone already entered iteration h +?	ds 1.	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time *t* + 2 δ .

time t	time <i>t + δ</i>	time <i>t + 2δ</i>	
•	•	•	
Leader enters iteration <i>h</i> and proposes a new block b _h extending a	Every honest player enters iteration h and sees the proposal.	r Every honest player sees some notarized block of height <i>h</i> .	
b ₁ b _{h-1} .	Either everyone sen " vote b_h ", or someone already entered iteration h+	nds 1.	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time $t + 2\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time t - ð	time t	time $t + \delta$	time <i>t + 2δ</i>	
Ea pla	Leader enters iteration h and proposes a new bloc \mathbf{b}_{h} extending a notarized chain $\mathbf{b}_{1} \dots \mathbf{b}_{h-1}$. rliest any honest over can enter	 Every honest player enters iteration <i>h</i> and sees the proposal. Either everyone send "vote b_h", or someone already entered iteration h+1 	time t + 3Δ - δ Every honest player sees some notarized block of height h.	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time $t + 2\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time <i>t - ð</i>	time t	time <i>t</i> + δ	time $t + 2\delta$	
	Leader enters	• Every honest player	time t + 3∆ - ð Every honest player	
	iteration <i>h</i> and proposes a new bloc b _h extending a potarized chain	enters iteration h k and sees the proposal.	sees some notarized block of height <i>h</i> . Cannot be ⊥.	
•	b ₁ b _{h-1} .	Either everyone send " vote b _h ", or	ds Must be b _h	
Ea pla iter	rliest any honest yer can enter ration h .	someone already entered iteration h+1 .		

Thus, every honest player finalizes the leader's block proposal by time $t + 3\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time <i>t - </i>	time t	time <i>t + δ</i>	time <i>t + 2</i> ð	tim	e t + 3 <i>ð</i>	
	•	•	time t +	· 3 Δ - δ	•	
	Leader enters iteration <i>h</i> and proposes a new bloc b _h extending a	Every honest player enters iteration h k and sees the proposal.	Every hor sees som block of h	nest player e notarized eight h .	Every honest player sees 2n/3 finalize messages for <i>h</i> .	
Ea pla iter	rliest any honest every can enter ration h .	Either everyone sen " vote b_h ", or someone already entered iteration h+	ds They all se "finalize <i>I</i> 1.	end)".		

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t

Every honest player

has entered iteration **h**.

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t	time $t + 3\Delta$
Every honest player has entered iteration <i>h</i> .	Either every honest timer for iteration <i>h</i> has fired, or some honest process entered iteration <i>h</i> +1 already.
	If timer fires, multicast " vote ⊥ _h ".

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t	time <i>t +</i> 3∆	time t + 3 Δ + δ	
Every honest player has entered iteration <i>h</i> .	Either every hones timer for iteration has fired, or some honest process entered iteration <i>h</i> already.	st Every honest player h enters iteration <i>h</i> +1.	
	If timer fires, multi " vote ⊥_h ".	cast	

In Conclusion

A new consensus protocol

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest security proofs!
- Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

- Proposal confirmation time of 3δ
- Optimistic block time of **2**
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

In Conclusion

A new consensus protocol

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest security proofs!
- Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

Thank you!

- Proposal confirmation time of 3δ
- Optimistic block time of **2**
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

Appendix

What do we look for in a consensus protocol?

1. Fairness. Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

- 2. Latency. Specifically, must have fast transaction confirmation time.
 - a. The optimistic case: when every player is honest.
 - b. The *pessimistic* case: when some players are faulty.

Underappreciated!

What do we look for in a consensus protocol?

1. Fairness. Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

- 2. Latency. Specifically, must have fast transaction confirmation time.
 - a. The optimistic case: when every player is honest.
 - b. The *pessimistic* case: when some players are faulty.

3. **Easy-to-understand.** Should be easy to understand *why* the protocol is secure.

Theoretical latency of partially-synchronous protocols that support random leaders

First "random-leader" partially synchronous

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
	I		
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

These protocols pipeline their block proposals to achieve **2ð** block time

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff			
[JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

However, they require multiple honest leaders in-a-row to confirm blocks, which hurts pessimistic liveness.

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

Protocols that don't pipeline blocks usually sacrifice block time, but get good expected liveness

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC [CDH ⁺ 22]	30	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

Easiest protocol description [CS20]

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta+1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Comparisons

Theoretical latency of protocols that support random leaders

Simplex: The best of both worlds

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Transaction confirmation time

Suppose a transaction **tx** is provided to the protocol by time **t**. How long does it take for **tx** to be finalized?

- Optimistic Confirmation Time (no faults)
 - **Proposal Confirmation Time**: when a new block is proposed, how long does it take for it to get confirmed?
 - **Optimistic Block Time**: how long does a transaction need to wait before being included in a block proposal?

Transaction confirmation time

Suppose a transaction **tx** is provided to the protocol by time **t**. How long does it take for **tx** to be finalized?

- Pessimistic Confirmation Time (allowing faults)
 - Worst-case confirmation time. How long does it take in the worst case to be finalized?
 - Expected Liveness: On average, how long does it take?
 (We assume that the transaction arrives at the beginning of the ith block proposal opportunity.)