Round-Robin is Optimal: Lower Bounds for Group Action Based Protocols

Daniele Cozzo¹, Emanuele Giunta^{1, 2}

IMDEA Software Institute, Spain
{daniele.cozzo, emanuele.giunta}@imdea.org

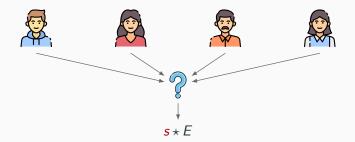
Universidad Politecnica de Madrid, Spain.

 $0 \star E = E$ (a+b) $\star E = a \star (b \star E)$ $\star (\cdot, E)$ hard to invert

Plausibly **post-quantum** problems.

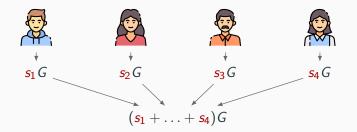
- Concrete candidate instantiations (e.g. CSIDH).
- **Example 2** Less structure that prime-order groups.

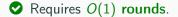
Given *n* parties with a secret sharing of $s \in \mathbb{G}$, they have to securely reconstruct $s \star E$ for some $E \in \mathcal{E}$.



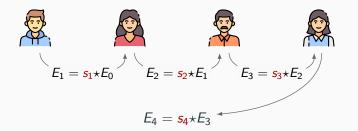
Building Block for Distributed Key Generation and Threshold Decryption/Signature.

 $\star : \mathbb{F}_q \times \mathbb{G} \to \mathbb{G}$ the scalar multiplication, $G \in \mathbb{G}$, $s = s_1 + \ldots + s_4$.



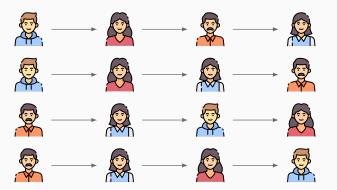


Given $E_0 \in \mathcal{E}$ and secret $s = s_1 + \ldots + s_4$.



Only the last user gets the result and is supposed to share it.

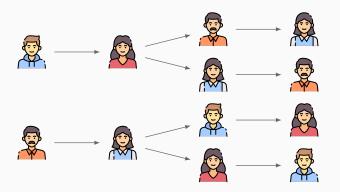
Round-Robin: Binary Splitting Strategy



Somputation and communication complexity: $O(n^2)$.

[DM20]

Round-Robin: Binary Splitting Strategy



Somputation and communication complexity: $O(n \log_2 n)$.

[DM20]

[DHK+23]

Given $\sigma: \mathcal{E} \to \{0,1\}^{\mu}$ random representation function, the action is replaced by the oracle \mathcal{O}_{act}

$$(a, \sigma(E)) \longrightarrow \mathcal{O}_{act}$$

Given $\sigma : \mathcal{E} \to \{0,1\}^{\mu}$ random **representation function**, the action is replaced by the oracle \mathcal{O}_{act}

$$(a, \sigma(E)) \longrightarrow \mathcal{O}_{act}$$

We do not model quadratic twists explicitly as in [DHK+23].

$$a_0 \star E_0 \xrightarrow{\text{twist}} (-a_0) \star E_0$$

Instead we allow the action to be non-faithful and $\mathbb G$ not commutative [BGZ23].

[DHK+23]

In the **GAM**, given a t out of n secret sharing of s

In the GAM, given a t out of n secret sharing of s

First Result: Any secure protocol computing $s \star E$ has round complexity $\geq t$.

In the GAM, given a t out of n secret sharing of s

First Result: Any secure protocol computing $s \star E$ has round complexity $\geq t$.

Second Result: Any such t round protocol where t parties obtain the output after the (t - 1)-th round requires to compute and communicate $\Omega(t \log_2 t)$ set elements.

First Result. Any protocol computing $s \star E$ either:

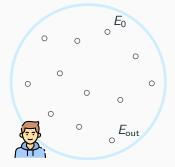
Requires t rounds Depends on a circuit evaluating * $*(\cdot, \cdot) = \bigcirc$ $*(\cdot, \cdot) = \bigcirc$

Second Result. The binary splitting strategy [DM20] is optimal.

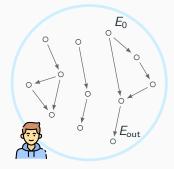
Round Lower Bound

Suppose
$$\mathbb{A}^{\mathcal{O}_{act}}(E_0) \to (s, E_{out})$$
 with $E_{out} = s \star E_0$.

Suppose
$$\mathbb{A}^{\mathcal{O}_{act}}(E_0) \to (s, E_{out})$$
 with $E_{out} = s \star E_0$.



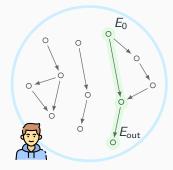
Suppose $\mathbb{A}^{\mathcal{O}_{\mathsf{act}}}(E_0) \to (s, E_{\mathsf{out}})$ with $E_{\mathsf{out}} = s \star E_0$.



 $D \rightarrow E$ if:

- E = O_{act}(a, D) was queried for some a ∈ G.
- *D* was observed *before E*.

Suppose $\mathbb{A}^{\mathcal{O}_{act}}(E_0) \to (s, E_{out})$ with $E_{out} = s \star E_0$.



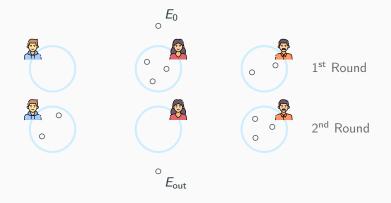
 $D \rightarrow E$ if:

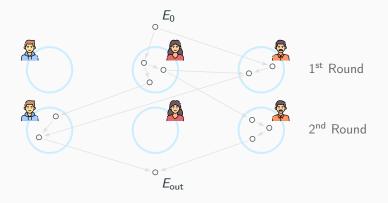
- E = O_{act}(a, D) was queried for some a ∈ G.
- *D* was observed *before E*.

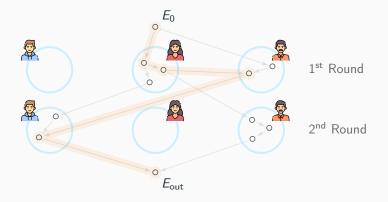
Then

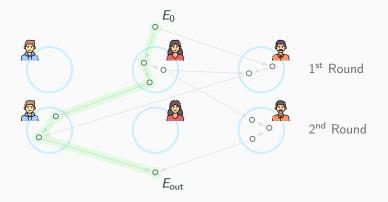
whp there exists a path from E_0 to E_{out} .





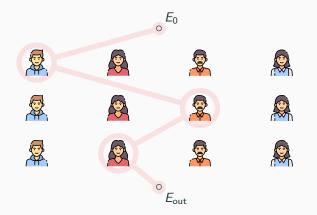






Round Lowerbound

If there exists a t - 1 rounds protocol to compute $s \star E_0$, then t - 1 parties can recover s:



Thanks for your attention!