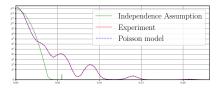
Rigorous Foundations for Dual Attacks in Coding Theory

Charles Meyer-Hilfiger, Jean-Pierre Tillich

TCC 2023



Dual attacks in codes and lattices

Dual attacks solve

Decoding Problem in Codes and Lattices

 \rightarrow Heart of security of cryptographic primitives

Lattices : Dual attacks would impact Kyber (NIST standard)

Independence assumptions to analyze dual attacks

Not valid	
Codes	Lattices
Carrier, Debris-Alazard, Meyer-Hilfiger, Tillich. 2022 : "Statistical decoding 2.0" ↓ Notice experimental differences	Ducas, Pulles. 2023 : "Does the Dual-Sieve Attack on Learning with Errors even Work?" ↓ Seriously question dual attacks

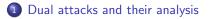
Contributions of the paper

• Explain why independence assumptions does not hold

• Give rigorous foundations for analyzing dual attacks $\ \leftarrow$ This talk

• Show that dual attacks in coding theory work

Table of Contents



2 Contribution : The distribution of the the bias

Setting for **Dual** attacks in Coding Theory

Linear code

 $\mathscr C$ a binary [n,k] linear code: linear subspace of \mathbb{F}_2^n of dimension k.

Decoding problem at distance t (small)

• Input:
$$\mathbf{y} \in \mathbb{F}_2^n$$
 where $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathscr{C}$ and $|\mathbf{e}| = t$

• **Output:** $\mathbf{e} \in \mathbb{F}_2^n$ such that $|\mathbf{e}| = t$ and $\mathbf{y} + \mathbf{e} \in \mathscr{C}$.

 $|\mathbf{x}|$ is Hamming weight of \mathbf{x} : number of non-zero coordinates.

Dual code

$$\mathscr{C}^{\perp} = \{ \mathbf{h} \in \mathbb{F}_2^n : \langle \mathbf{h}, \mathbf{c} \rangle = 0 \quad \forall \mathbf{c} \in \mathscr{C} \} \to \mathscr{C}^{\perp} \text{ is } [n, n-k] \text{ linear code}$$

 $\langle \mathbf{x}, \mathbf{z}
angle \in \mathbb{F}_2$ usual inner product for \mathbb{F}_2^n

Idea of Dual attacks (Al-Jabri, 2001)

•
$$\mathbf{h} = \boxed{w \text{ (small)}} \in \mathscr{C}^{\perp}$$

• $\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{c}, \mathbf{h} \rangle + \langle \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \sum_{i=1}^{n} \mathbf{e}_{i} \mathbf{h}_{i} \rightarrow \text{Biased toward } 0$

Distinguisher

$$(\mathbf{y} \text{ random } \mathbf{v}.\mathbf{s} \ \mathbf{y} = \mathbf{c} + \mathbf{e})$$

 \bullet Compute all parity-checks of weight w

$$\mathscr{C}_{\boldsymbol{w}}^{\perp} \stackrel{ riangle}{=} \{ \mathbf{h} \in \mathscr{C}^{\perp} \; : \; |\mathbf{h}| = \boldsymbol{w} \}$$

• Compute **bias**

$$\mathsf{bias}_{\mathscr{C}_w^{\perp}}\left(\mathbf{y}\right) \stackrel{\triangle}{=} \frac{1}{|\mathscr{C}_w^{\perp}|} \sum_{\mathbf{h} \in \mathscr{C}_w^{\perp}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle} \in [-1, 1]$$

Make decision:

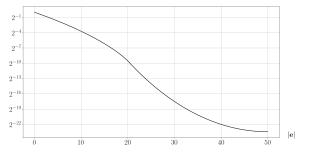
 $\mathsf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{y})$ is big enough \rightarrow decide $\mathbf{y} = \mathbf{c} + \mathbf{e}$

Estimate of $\mathbf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{y})$ $(\mathbf{y} = \mathbf{c} + \mathbf{e}, \text{ w.t } |\mathbf{e}| \text{ small })$

Theorem [CDMT22]

Under certain conditions:

$$\mathsf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{y}) \approx \frac{K_w^{(n)}\left(|\mathbf{e}|\right)}{\binom{n}{w}} \qquad (K_w^{(n)} \text{ Krawtchouk polynomial})$$



$$n = 100, w = 10$$

Idea of Dual Attacks 2.0 [CDMT, 2022]

• Split support in arbitrary complementary part \mathscr{P} and $\mathscr{N} \to \text{Recover } e_{\mathscr{P}}$?

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle$$

$$\langle \mathbf{y}, \mathbf{h} \rangle + \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle = \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle \rightarrow \text{biased toward } 0$$

Algorithm : return \mathbf{x} s.t $\langle \mathbf{y}, \mathbf{h} \rangle + \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}} \rangle$ most biased tower 0

- Compute set of parity-checks $\mathscr{C}_w^{\perp} \stackrel{\Delta}{=} \{\mathbf{h} \in \mathscr{C}^{\perp} : |\mathbf{h}_{\mathscr{N}}| = w\}$
- Compute **bias** for each **x**

$$\mathsf{bias}_{\mathscr{C}_w^{\perp}}\left(\mathbf{x}\right) \stackrel{\triangle}{=} \frac{1}{|\mathscr{C}_w^{\perp}|} \sum_{\mathbf{h} \in \mathscr{C}_w^{\perp}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle + \langle \mathbf{x}, \mathbf{h} \, \mathscr{P} \, \rangle} \in [-1 \, , \, 1]$$

• Return $\mathbf x$ such that $\mathsf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf x)$ maximum \to Hope max given by $\mathbf e_{\mathscr{P}}$

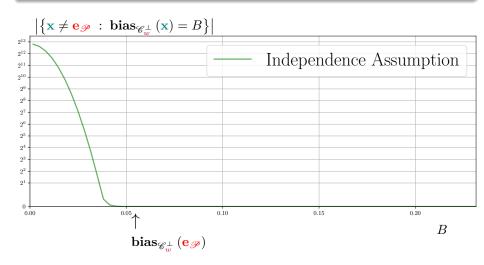
Analysis of Dual Attack 2.0

$$\mathsf{Recall} \quad \mathsf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{x}) \stackrel{\triangle}{=} \frac{1}{|\mathscr{C}_w^{\perp}|} \sum_{\mathbf{h} \in \mathscr{C}_w^{\perp}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle + \langle \mathbf{x}, \mathbf{h}_\mathscr{P} \rangle}$$

Study probability that $\mathbf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{e}_{\mathscr{P}}) > \mathbf{bias}_{\mathscr{C}_w^{\perp}}(\mathbf{x})$ for all $\mathbf{x} \neq \mathbf{e}_{\mathscr{P}}$

Sum up in a plot!

Under Independence assumption:



Sum up in a plot!

Under Independence assumption:

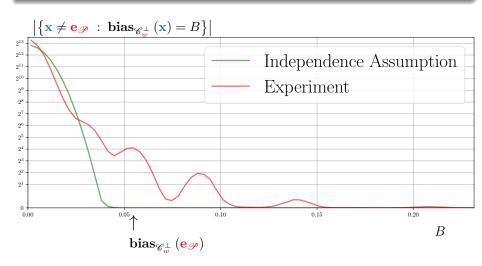


Table of Contents

Dual attacks and their analysis

A dual expression for $\mathbf{bias}_{\mathscr{C}_{w}^{\perp}}(\mathbf{x})$

Theorem

$$\mathbf{bias}_{\mathscr{C}_{w}^{\perp}}\left(\mathbf{x}\right) \approx \sum_{i} N_{i} \;\; \frac{K_{w}\left(i\right)}{\binom{|\mathscr{N}|}{w}}$$

•
$$N_i$$
 is number of word of $\mathscr{C}_{\mathbf{x}}$ at distance i of $\mathbf{e}_{\mathscr{N}}$
• $\mathscr{C}_{\mathbf{x}}$ $\stackrel{\triangle}{=} \{ \mathbf{c}_{\mathscr{N}} : \mathbf{c} \in \mathscr{C} \text{ and } \mathbf{c}_{\mathscr{P}} = \mathbf{x} + \mathbf{e}_{\mathscr{P}} \}$

Proof: Poisson formula

 \rightarrow Dominated by lowest term *i* s.t $N_i \neq 0$

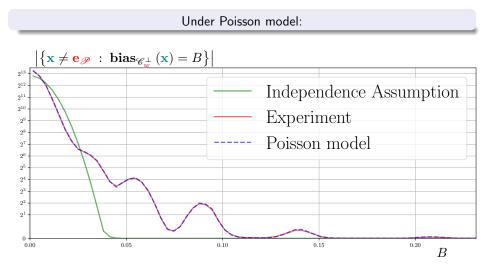
Model for the N_i

Poisson model

 $N_i \sim \text{Poisson} \left(\mathbb{E} \left[N_i \right] \right)$

ightarrow The expression of $\mathbb{E}\left[N_{i}
ight]$ is known

Experimental Results



Conclusion

- This model can be used to analyze dual attacks
- [CDMT22] with a tweak \rightarrow originally claimed complexities! \rightarrow Dual attacks in Coding Theory work!
- Can be adapted to Lattices

Thank you!