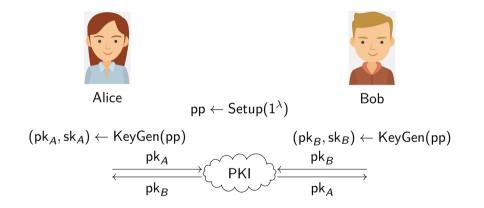
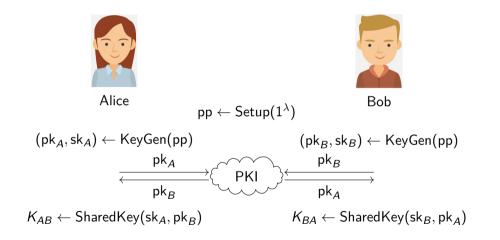
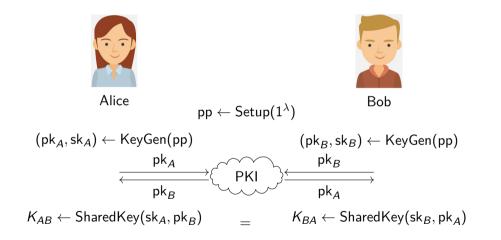
On the Multi-User Security of LWE-based NIKE

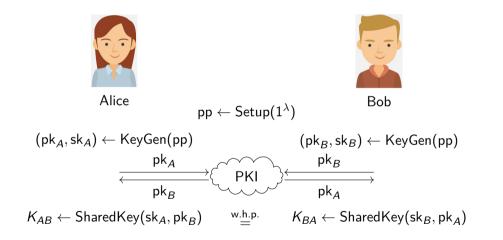
Roman Langrehr, ETH Zurich

2023-12-02









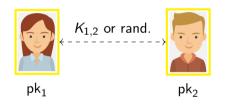
Adversary

• gets public keys of 2 users and

 pk_2

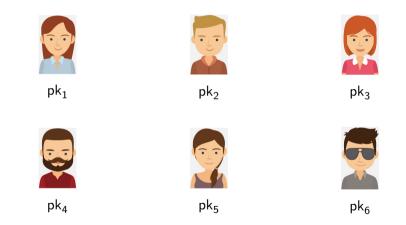
Adversary

- gets public keys of 2 users and
- real or random shared key



Adversary can adaptively

spawn new users



Adversary can adaptively

- spawn new users
- corrupt users

pk₄, sk₄

 pk_2

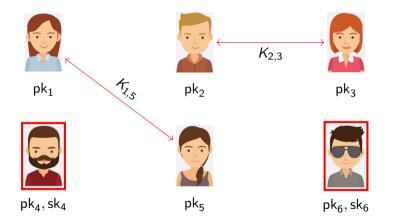
 pk_3

 pk_5

 $\mathsf{pk}_6, \mathsf{sk}_6$

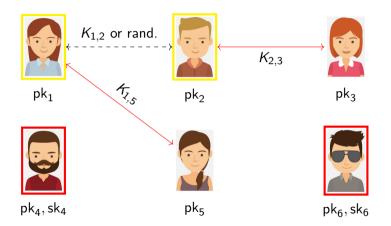
Adversary can adaptively

- spawn new users
- corrupt users
- reveal shared keys, even those computed with a challenge users secret key



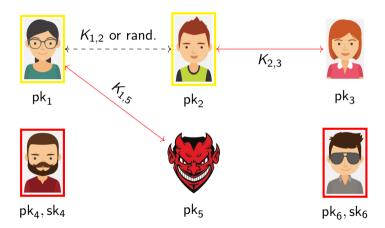
Adversary can adaptively

- spawn new users
- corrupt users
- reveal shared keys, even those computed with a challenge users secret key
- get challenged on one uncorrupted shared key

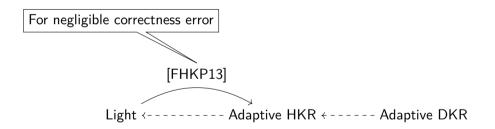


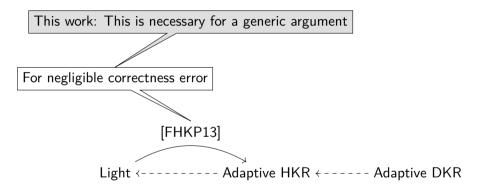
Adversary can adaptively

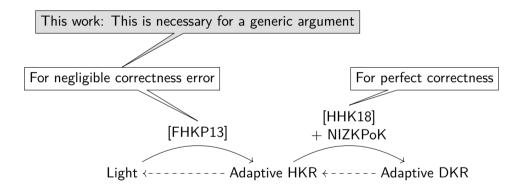
- spawn new users
- corrupt users
- reveal shared keys, even those computed with a challenge users secret key
- get challenged on (one) uncorrupted shared key
- introduce maliciously generated public keys



Light <----- Adaptive HKR <---- Adaptive DKR

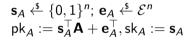






Alice

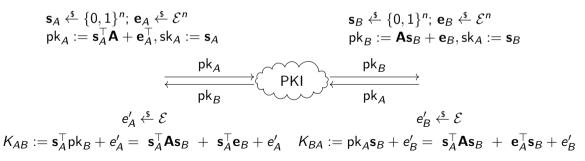
 $\mathbf{A} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_q^{n imes n}$



 $\begin{aligned} \mathbf{s}_B &\stackrel{s}{\leftarrow} \{0,1\}^n; \ \mathbf{e}_B &\stackrel{s}{\leftarrow} \mathcal{E}^n \\ \mathsf{pk}_B &:= \mathbf{As}_B + \mathbf{e}_B, \mathsf{sk}_A := \mathbf{s}_B \end{aligned}$

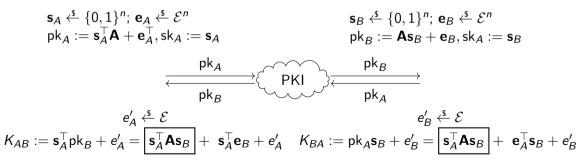
Bob

Alice



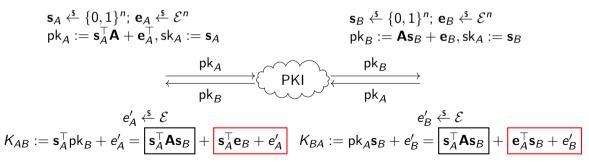
Bob

Alice



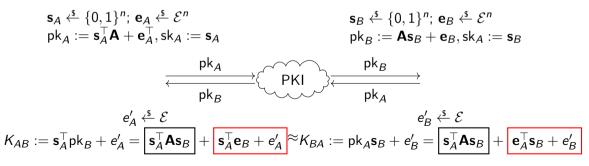
Bob

Alice



Bob

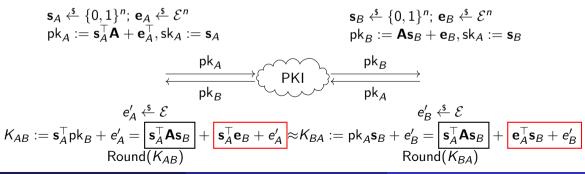
Alice



Bob

Alice

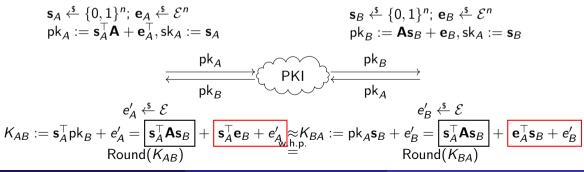
 $\mathbf{A} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_q^{n imes n}$



On the Multi-User Security of LWE-based NIKE

Bob

Alice



Roman Langrehr, ETH Zurich

On the Multi-User Security of LWE-based NIKE

polynomial modulus-to-noise ratio \implies non-neglible correctness error

- polynomial modulus-to-noise ratio \implies non-neglible correctness error
- super-polynomial modulus-to-noise ratio
 - \implies neglible correctness error

polynomial modulus-to-noise ratio \implies

super-polynomial modulus-to-noise ratio

This correctness error is inherent [GKRS20]

- > non-neglible correctness error
- \implies neglible correctness error

This correctness error is inherent [GKRS20]

Potential errors can be corrected with one bit of interaction [DXL12, Pei14]

This correctness error is inherent [GKRS20]

Potential errors can be corrected with one bit of interaction [DXL12, Pei14]

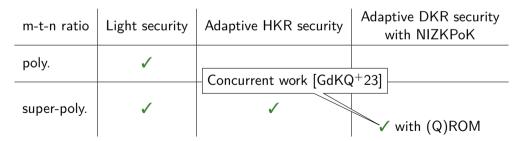
m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.			
super-poly.			

m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.		[DXL12,	
super-poly.		Pei14]	

This correctness error is inherent [GKRS20]

Potential errors can be corrected with one bit of interaction [DXL12, Pei14]

m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.	√	Generic	
super-poly.	✓		



m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.	1	✓ (bounded)	
		? (unbounded)	
super-poly.	1	1	✓ with (Q)ROM

m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.	1	✓ (bounded)? (unbounded)	×
super-poly.	1	<i>√</i>	✓ with (Q)ROM

m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.	1	✓ (bounded)? (unbounded)	×
super-poly.	1	1	 ✗ poly. noise ✓ super-poly. noise ✓ with (Q)ROM

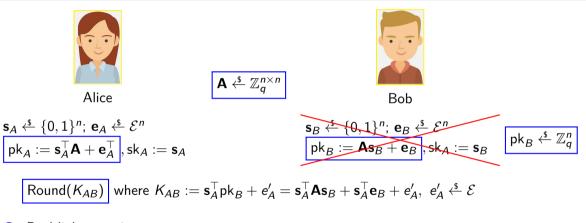
Light security [DXL12, Pei14]

Alice

$$\mathsf{Round}(\mathsf{K}_{AB}) \text{ where } \mathsf{K}_{AB} := \mathbf{s}_A^\top \mathsf{pk}_B + e_A' = \mathbf{s}_A^\top \mathbf{As}_B + \mathbf{s}_A^\top \mathbf{e}_B + e_A', \ e_A' \stackrel{\hspace{0.1em} \leftarrow}{\leftarrow} \mathcal{E}$$

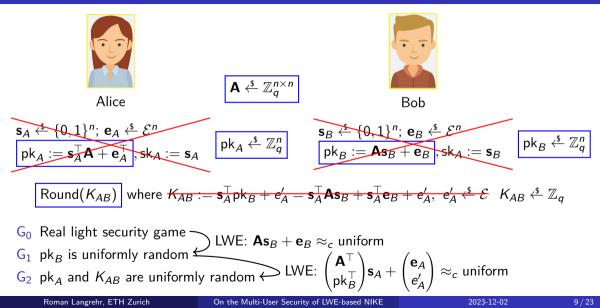
G₀ Real light security game

Light security [DXL12, Pei14]



 $\begin{array}{c} \mathsf{G}_0 \ \text{Real light security game} \longrightarrow \mathsf{LWE}: \ \mathbf{As}_B + \mathbf{e}_B \approx_c \mathsf{uniform} \\ \mathsf{G}_1 \ \mathsf{pk}_B \ \text{is uniformly random} \end{array} \xrightarrow{} \mathsf{LWE}: \ \mathbf{As}_B + \mathbf{e}_B \approx_c \mathsf{uniform} \\ \end{array}$

Light security [DXL12, Pei14]



Adaptive HKR security

• Reduction guesses the two challenge users

Adaptive HKR security

- Reduction guesses the two challenge users
- Problem: Shared key queries with a challenge users secret key

Alice
$$\mathbf{A} \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \mathbb{Z}_q^{n \times n}$$
Charlie $(0,1)^n$; $\mathbf{e}_A \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \mathcal{E}^n}{= \mathbf{s}_A^\top \mathbf{A} + \mathbf{e}_A^\top}$, $\mathbf{sk}_A := \mathbf{s}_A$ $\mathbf{s}_C \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \mathbb{S}}{= \mathbf{s}_C + \mathbf{e}_C}$, $\mathbf{sk}_C := \mathbf{s}_C$

 $\mathsf{Round}(\mathcal{K}_{AC}) \text{ where } \mathcal{K}_{AC} := \mathbf{s}_{A}^{\top}\mathsf{pk}_{C} + e_{A}' = \mathbf{s}_{A}^{\top}\mathbf{As}_{C} + \mathbf{s}_{A}^{\top}\mathbf{e}_{C} + e_{A}', \ e_{A}' \stackrel{\$}{\leftarrow} \mathcal{E}$

s_A ∻

Needed:
$$\mathcal{K}_{AC} := \mathbf{s}_{A}^{\top} \mathbf{p} \mathbf{k}_{C} + \mathbf{e}_{A}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{s}_{A}^{\top} \mathbf{e}_{C} + \mathbf{e}_{A}', \ \mathbf{e}_{A}' \stackrel{\text{\tiny \sc sc s}}{=} \mathcal{E}$$

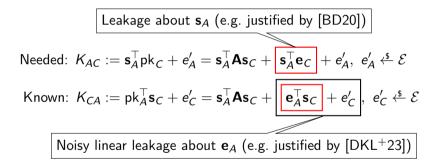
Needed:
$$K_{AC} := \mathbf{s}_{A}^{\top} \mathbf{p} \mathbf{k}_{C} + e_{A}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{s}_{A}^{\top} \mathbf{e}_{C} + e_{A}', \ e_{A}' \stackrel{\$}{\leftarrow} \mathcal{E}$$

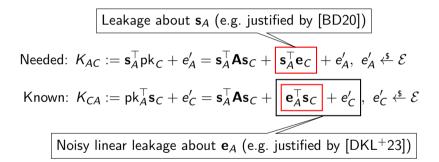
Known: $K_{CA} := \mathbf{p} \mathbf{k}_{A}^{\top} \mathbf{s}_{C} + e_{C}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{e}_{A}^{\top} \mathbf{s}_{C} + e_{C}', \ e_{C}' \stackrel{\$}{\leftarrow} \mathcal{E}$

Needed:
$$K_{AC} := \mathbf{s}_{A}^{\top} \mathbf{p} \mathbf{k}_{C} + e_{A}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{s}_{A}^{\top} \mathbf{e}_{C} + e_{A}', \ e_{A}' \stackrel{\boldsymbol{\varsigma}}{\leftarrow} \mathcal{E}$$

Known: $K_{CA} := \mathbf{p} \mathbf{k}_{A}^{\top} \mathbf{s}_{C} + e_{C}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{e}_{A}^{\top} \mathbf{s}_{C} + e_{C}', \ e_{C}' \stackrel{\boldsymbol{\varsigma}}{\leftarrow} \mathcal{E}$

Leakage about
$$\mathbf{s}_{A}$$
 (e.g. justified by [BD20])
Needed: $K_{AC} := \mathbf{s}_{A}^{\top} \mathbf{p} \mathbf{k}_{C} + e_{A}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{s}_{A}^{\top} \mathbf{e}_{C} + e_{A}', \ e_{A}' \stackrel{\$}{\leftarrow} \mathcal{E}$
Known: $K_{CA} := \mathbf{p} \mathbf{k}_{A}^{\top} \mathbf{s}_{C} + e_{C}' = \mathbf{s}_{A}^{\top} \mathbf{A} \mathbf{s}_{C} + \mathbf{e}_{A}^{\top} \mathbf{s}_{C} + e_{C}', \ e_{C}' \stackrel{\$}{\leftarrow} \mathcal{E}$





n has to grow linear with the number of users

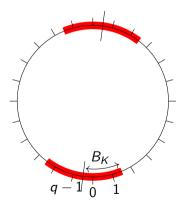
On the Multi-User Security of LWE-based NIKE

• We don't need K_{AC} , Round (K_{AC}) is sufficient

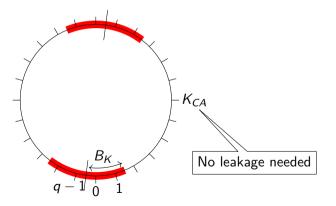
- We don't need K_{AC} , Round(K_{AC}) is sufficient
- Often Round(K_{AC}) = Round(K_{CA})

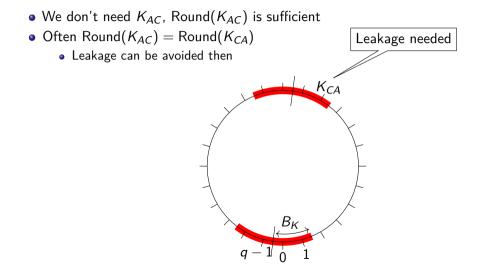
- We don't need K_{AC} , Round(K_{AC}) is sufficient
- Often Round(K_{AC}) = Round(K_{CA})
 - Leakage can be avoided then

- We don't need K_{AC} , Round(K_{AC}) is sufficient
- Often Round(K_{AC}) = Round(K_{CA})
 - Leakage can be avoided then



- We don't need K_{AC} , Round(K_{AC}) is sufficient
- Often Round(K_{AC}) = Round(K_{CA})
 - Leakage can be avoided then





• Leakage on s_A must not depend on A

- Leakage on s_A must not depend on A
- Whether K_{CA} is in the red zone does depend on **A**

- Leakage on s_A must not depend on A
- Whether K_{CA} is in the red zone does depend on **A**

The solution:

• We need leakage $\mathbf{s}_A^\top \mathbf{e}_C$

- Leakage on s_A must not depend on A
- Whether K_{CA} is in the red zone does depend on **A**

The solution:

- We need leakage $\mathbf{s}_{A}^{\top}\mathbf{e}_{C}$
- \mathbf{e}_C has only small influence on K_{CA} .

- Leakage on \mathbf{s}_A must not depend on \mathbf{A}
- Whether K_{CA} is in the red zone does depend on **A**

The solution:

- We need leakage $\mathbf{s}_{A}^{\top}\mathbf{e}_{C}$
- \mathbf{e}_C has only small influence on K_{CA} .

 \implies number of users can grow polynomially in *n*

m-t-n ratio	Light security	Adaptive HKR security	Adaptive DKR security with NIZKPoK
poly.	1	\checkmark (bounded)	×
		? (unbounded)	
super-poly.	\checkmark	\checkmark	🗡 poly. noise
			🗸 super-poly. noise
			✓ with (Q)ROM

🔋 Zvika Brakerski and Nico Döttling.

Hardness of LWE on general entropic distributions. In Anne Canteaut and Yuval Ishai, editors, <u>EUROCRYPT 2020, Part II</u>, volume 12106 of <u>LNCS</u>, pages 551–575. Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45724-2_19.

David Cash, Eike Kiltz, and Victor Shoup.
 The twin Diffie-Hellman problem and applications.
 In Nigel P. Smart, editor, <u>EUROCRYPT 2008</u>, volume 4965 of <u>LNCS</u>, pages 127–145.
 Springer, Heidelberg, April 2008.
 doi:10.1007/978-3-540-78967-3_8.

 Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi.
 Efficient laconic cryptography from learning with errors.
 In Carmit Hazay and Martijn Stam, editors, <u>EUROCRYPT 2023</u>, Part III, volume 14006 of <u>LNCS</u>, pages 417–446. Springer, Heidelberg, April 2023. doi:10.1007/978-3-031-30620-4_14.

Jintai Ding, Xiang Xie, and Xiaodong Lin.
 A simple provably secure key exchange scheme based on the learning with errors problem.
 Cryptology ePrint Archive, Report 2012/688, 2012.
 https://eprint.iacr.org/2012/688.

 Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key exchange.
 In Kaoru Kurosawa and Goichiro Hanaoka, editors, <u>PKC 2013</u>, volume 7778 of <u>LNCS</u>, pages 254–271. Springer, Heidelberg, February / March 2013. doi:10.1007/978-3-642-36362-7 17.

Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter Schwabe. Swoosh: Practical lattice-based non-interactive key exchange. Cryptology ePrint Archive, Report 2023/271, 2023. https://eprint.iacr.org/2023/271. Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki.
 Limits on the efficiency of (ring) LWE based non-interactive key exchange.
 In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 374–395. Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45374-9_13.

Julia Hesse, Dennis Hofheinz, and Lisa Kohl.
 On tightly secure non-interactive key exchange.
 In Hovav Shacham and Alexandra Boldyreva, editors, <u>CRYPTO 2018, Part II</u>, volume 10992 of <u>LNCS</u>, pages 65–94. Springer, Heidelberg, August 2018.
 doi:10.1007/978-3-319-96881-0_3.

Lattice cryptography for the internet.

In Michele Mosca, editor, <u>Post-Quantum Cryptography - 6th International Workshop</u>, <u>PQCrypto 2014</u>, pages 197–219. Springer, Heidelberg, October 2014. doi:10.1007/978-3-319-11659-4_12. Alice, Bob, and other faces: freepik.com Devil face: vecteezy.com

- Leakage on s_A must not depend on A
- Whether K_{CA} is in the red zone does depend on **A**

The solution:

- We need leakage $\mathbf{s}_{A}^{\top}\mathbf{e}_{C}$
- \mathbf{e}_C has only small influence on K_{CA} .
- Use leakage $\mathbf{s}_{A}^{\top}\mathbf{e}_{i}$ for several $\mathbf{e}_{i} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{E}^{n}$
- If $\mathbf{s}_{A}^{\top}\mathbf{A}\mathbf{s}_{C}$ is in the red zone \Rightarrow use one of the \mathbf{e}_{i} as Charlie's error vector.
- Otherwise sample a fresh error vector for Charlie

 \implies number of users can grow polynomially in *n*

DKR insecurity

Use of NIZKPoKs $\Rightarrow \mathcal{A}$ can register malicious public key only with a valid secret key.

- Adversary can create (pk, sk) s.t. $\mathbf{s}_{\mathcal{A}}^{\top} pk \approx 0$
- $\Rightarrow\,$ High likelihood of correctness error with Alice

Example:

- Assume for simplicity Alice does not add noise to the shared key before rounding
- Register for $i \in [n]$ user with $\mathsf{pk}_i = -e_i$, $\mathsf{sk}_i = \mathbf{0}$
- If $(\mathbf{s}_A)_i = 0$, Round $(\mathcal{K}_{A,i}) = \text{Round}(0) = 0$
- If $(\mathbf{s}_{A})_{i} = 1$, Round $(K_{A,i}) = \text{Round}(q-1) = 1$
- \Rightarrow \mathcal{A} can extract $\mathbf{s}_{\mathcal{A}}$ with n malicious users
- Attack can be extended to
 - shared keys with noise
 - different distributions of LWE secrets
 - different rounding functions (with polynomial modulus-to-noise ratio)

For malicious user Charlie:

- Extract sk_C from NIZKPoK
- Compute K_{CA} with sk_C
- B: maximum difference between K_{AC} and K_{CA}
- Use noise super-polynomial in ${\cal B}$ for the shared keys
- $\Rightarrow K_{AC} \approx_s K_{CA}$