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This work: Simple proof for the non-uniform setting
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[HRV]: Next-Block Pseudoentropy

Key insight: A simple weak notion of pseudorandomness
 Bits Unpredictability - Counting unpredictable bits
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1. Constructing Bits Unpredictability from one-way function

2. Converting Bits Unpredictability to pseudorandomness
  ([HRV], but easier to analyize)

Relying on simple tools (Goldriech-Levin, Chernoff, …)
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Step 1: Bits Unpred. → Random Bits Unpred.

Problem: We don’t know which bits are unpredictable
• Maybe the 𝑖-th bit is always predictable

𝑔%" 𝑋!, … , 𝑋", 𝐼 = 𝑔% 𝑋! -. , 𝑔% 𝑋, , … , 𝑔% 𝑋" /.

𝑔%(𝑋!)𝑀

𝐼 ← [𝑚]

𝑔%(𝑋,) 𝑔%(𝑋")

𝑚 − 𝐼

𝑚(𝑛 − 1)

. . .
𝑚
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Step 2: Extraction

𝑔%" 𝑋!!, … , 𝑋"!, 𝐼!
𝑔%" 𝑋!,, … , 𝑋",, 𝐼,

𝑔%" 𝑋!0 , … , 𝑋"0 , 𝐼0

𝑡

𝐻: 0,1 0 → 0,1 1

Here we improve parameters over [HRV]

...
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Summary

Thanks!

Bits Unpredictabilty 
• Simpler Proof
• Better Parameters

OWF → Bits Unpredictability
• 𝑔% X = M f X ,M(X)

Bits Unpredictabity → PRG

Question: Simplifying other proofs/constructions



The Final Construction

𝑔%(𝑋!!) 𝑔%(𝑋,!) 𝑔%(𝑋"!)
𝑔%(𝑋!,) 𝑔%(𝑋,,) 𝑔%(𝑋",)

𝑔%(𝑋!2) 𝑔%(𝑋,2) 𝑔%(𝑋"2)

𝑔%(𝑋!"
") 𝑔%(𝑋,"

") 𝑔%(𝑋""
")

𝑔! X = M f X ,M(X)

. . .

. . .

...



Bits Unpredictability – Formal Definition

Def:
 𝑔%: 0,1 " → 0,1 3 has 𝑘 bit unpredictability if the following holds for every
 𝜖 ∈ 1/𝑝𝑜𝑙𝑦.
For every 𝑥 ∈ 0,1 " there exists a set 𝑆4 ⊆ [𝑚], such that |𝑆4| ≥ 𝑘, and,

Pr
5,7

𝑃 𝑀, 𝑔% 𝑋 /# = 𝑔%(𝑋)# | 𝑖 ∈ 𝑆) ≤
1
2 + 𝜖

For any PPT 𝑃.

𝑀(𝑓(𝑋)) 𝑀(𝑋)𝑀

𝑛 − 𝑟(𝑥) 𝑟(𝑥) + log 𝑛


