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* The minimal assumption for cryptography

e Can be used to construct many useful primitives
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Basic result in crypto [Hastad-Impagliazzo-Levin-Luby]

[Holenstein], [Haitner-Harnik-Reingold], [Haitner-Reingold-Vadhan],
[Vadhan-Zheng], [Haitner-Vadhan]

* Much simpler, better efficiency
e Still too complicated to teach in graduate course

This work: Simple proof for the non-uniform setting

with better parameters
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1. Start with a weaker notion of pseudorandomness
2. Amplify it

[HILL]): Pseudoentropy
[HRV]: Next-Block Pseudoentropy

Key insight: A simple weak notion of pseudorandomness

Bits Unpredictability - Counting unpredictable bits
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Llet X = (Xq, .o, Xy,

Next-Bit Unpredictability [Blum-Micali]:
* Foreveryi € [n], X; is hard to predict given X4, ..., X;_1 by poly-time TM
e [Yao ‘82]: Next-bit unpredictability & Pseudorandomness

Bits Unpredictability: Some of the bits are unpredictable
* Foreveryi € S C [n], X; is hard to predict given X4, ..., X;_4
 Sisarandom variable, can be dependent on X
* Want |S| to be large
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Proof Overview

1. Constructing Bits Unpredictability from one-way function

2. Converting Bits Unpredictability to pseudorandomness

([HRV], but easier to analyize)

Relying on simple tools (Goldriech-Levin, Chernoff, ...)
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e Let f:{0,1}" — {0,1}" be a one-way function
* Let M be a random nxn binary matrix, and X < {0,1}"

n n

The construction: < > <

M M(f (X)) M(X)
guX) = M(f (X)), M(X)

gy (X) is not pseudorandom (given M)
* Can find X from M, M (X)

What happens if we read it bit-by-bit?

Thm:
gy (X) has (n + log n) Bits Unpredictability (given M).
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Assume f:{0,1}" — {0,1}" is r-regular (|f‘1(f(x))‘ = 2") [Goldreich-Krawczyk-Luby]

Claim: The first & n — r bits of M(f (X)), and the first r 4+ log n bits of M (X) are

unpredictable. - n p n N
M M(f (X)) M(X)
)
n—r r +logn

When reading g,,(X) bit-by-bit, there are n + log n unpredictable bits!
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Proof: Bits Unpredictability from Any OWF
What about arbitrary OWFs?

Same construction works

M M(f (X)) M(X)

Main observation: Every function is a combination of regular functions.
 Forevery x let r(x) = log|f ~*(f (x))]
* letD; = {x:r(x) =j}forj=1,..,n
* fi= fIDj:Dj — {0,1}" is j-regular

gy (X) is a convex combination of distributions with
(n 4+ log n) Bits Unpredictability.
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g (X) is not pseudorandom
M M(f (X)) M(X)

* Must use the next-bit property

Simple construction ([HRV])
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Step 1: Bits Unpred. = Random Bits Unpred.

Problem: We don’t know which bits are unpredictable

 Maybe the i-th bit is always predictable

m m(n — 1)
< > I
M Im(X1) Im(X2) " Im (Xn)
— i
I « [m] m— [

917\}1(X1» s X, I) — gM(X1)21;gM(Xz), ---;gM(Xn)<I
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Step 2: Extraction

917\}1()(11: ---'X%u L)

g}\}I(Xlzr ,X,%, 12)

g (Xt . XE L)

H:{0,1}* - {0,1}"

Here we improve parameters over [HRV]
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Summary

Bits Unpredictabilty
e Simpler Proof
* Better Parameters

OWF — Bits Unpredictability
» gu(X) = M(f(X)), M(X)
Bits Unpredictabity = PRG

Question: Simplifying other proofs/constructions

Thanks!



The Final Construction

QM(X11

Ium(

gM(Xf)

Iu(

guX) = M(f(X)), M(X)



Bits Unpredictability — Formal Definition

Def:

gm:10,1}* = {0,1}™ has k bit unpredictability if the following holds for every
e € 1/poly.

For every x € {0,1}" there exists a set S,, € [m], such that |S, | = k, and,

PriPM, gu(X)<i) = gu(X)i | L€ Syl <5 +e

For any PPT P.

M M(f (X)) M(X)

n—r(x) r(x)+logn



