Near-Optimal Private Information Retrieval

with Preprocessing

Yale scCHOOL OF ENGINEERING . § ,
& APPLIED SCIENCE

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

| |
{Client} [Server}

! !

DB[x] L

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

x €{0,..,n-1} DB € {0,1)}"

I I

Giewll [Semer

Privacy:
There exists a PPT simulator A* with no knowledge of x

that can act as Client and Server cannot tell the difference

Applications

- Building block for different applications:

Applications

- Building block for different applications:

\

Meta-data hiding messaging
[Angel et al., OSDI ‘“16]

/

(N

Private movie streaming
K [Gupta et al., USENIX “16] /

Private ad serving
K [Zhong et al., USENIX ‘21] /

Applications

- Building block for different applications:

\

Meta-data hiding messaging
[Angel et al., OSDI ‘“16] /

4 h

Private movie streaming
\ [Gupta et al., USENIX “16] /

Private ad serving
\ [Zhong et al., USENIX ‘21] /

PIR with Client Preprocessing [BIM ‘04, ..., CK ‘20, ...]

Preprocess:

DB € {0,1)}"

|

PIR with Client Preprocessing [BIM ‘04, ..., CK ‘20, ...]

Query (at step i):

X €{0,..,n-1} DB € {0,1)"

H € {0,1}°®
7

|

DB[x]

PIR with Client Preprocessing [BIM ‘04, ..., CK ‘20, ...]

Preprocess:

|

H € o(n)

DB € {0,1)}"

|

Query (at step i):

X € {0,..,n-1}

H € {0,1}°™
7
t -

DB[x]

DB € {0,1)"

|

Our results

Scheme Amortized Server Amortized Bandwidth Client space Number of servers
Computation

Ours O(Vn) O(1) O(Vn) 1

[Shi et al., CRYPTO 21] | O(\n) O(1) O(Wn) 2

[Corrigan Gibbs etal., | O(vn) O(n) O(Vn) 1

EUROCRYPT 22]

10

Our results

EUROCRYPT 22]

11

Scheme Amortized Server Amortized Bandwidth Client s
Computation

Ours O(Vn) O(1) O(n)

[Shi et al., CRYPTO 21] | O(\n) A1) O(Vn)

[Corrigan Gibbs et al., O(Vn)

Our results

b.
C.
d

1. Construct pseudorandom sets

with the following properties:
a.

Concise representation

Fast membership testing

Fast enumeration

Adaptability: Supports adding
and removing a constant number
of elements while maintaining
concise representation

12

Our results

1.

Construct pseudorandom sets

with the following properties:

a. Concise representation

b. Fast membership testing

c. Fast enumeration

d. Adaptability: Supports adding
and removing a constant number
of elements while maintaining
concise representation

Resulting key must
hide which elements
were operated on.

13

Our results

1.

Construct pseudorandom sets

with the following properties:

a. Concise representation

b. Fast membership testing

c. Fast enumeration

d. Adaptability: Supports adding
and removing a constant number
of elements while maintaining
concise representation

14

2. Show that we can use such
pseudorandom sets to construct a
PIR scheme with the complexities
aforementioned.

Our results

b.
C.
d

1. Construct pseudorandom sets

with the following properties:
a.

Concise representation

Fast membership testing

Fast enumeration

Adaptability: Supports adding
and removing a constant number
of elements while maintaining
concise representation

15

Our results

1. Construct pseudorandom sets

with the following properties:
Concise representation

Fast membership testing

Fast enumeration

Adaptability: Supports adding
and removing a constant number
of elements while maintaining
concise representation

QO T O

16

Starting point

- Our starting point is the privately puncturable PRF primitive.

17

Tool: Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

=

{ Puncture J

|

18

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

X ={X,,., %o}
Puncture

1.

For this presentation: Puncture returns a key k’
where:
Outputs for points X5--sXp @r€ ‘re-randomized’.
2. Given k' adversary cannot figure out which
points were punctured.

19

Set definition [SACM ‘21]

- Given: Privately puncturable PRF F: {0,1}* x {0,1}* — {0,1}.
- Want: set containing approximately Y¥n elements in {0,...,n-1} picked
from some sampling distribution over {0,...,n-1}.

20

Set definition [SACM ‘21]

- Given: Privately puncturable PRF F: {0,1}* x {0,1}* — {0,1}.
- Want: set containing approximately Y¥n elements in {0,...,n-1} picked
from some sampling distribution over {0,...,n-1}.

- Foreach xin {0,...,n-1}:
- x € S iff F (x[i]) =1 Vi € {0,...log(n)/2}.

21

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

X in base 2

~
x =011

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

X in base 2

x =/0111 % 0/1

23

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

X in base 2

x =/0111 % 0/1

X[1:]= 111 = o
X[2:]]= 1] =% on

24

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

X in base 2

N

x =/0111 i} 0/1

X[1:]= 111 =Es o
X[2:]= 1] = on

25

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

Test membership in (1) time. /Xiise 2
X = ‘ 11 , |:> 0/1
X[1:]= 111 =t on
x[2:]= |11 = o1

26

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

Test membership in O(1) time. Xin base 2
= — F
Enumerate in O(¥n) time by X —‘01 1 1, =) 0/1
starting from all strings of size

log(n)/2 and appending 0/1 only 1 E
to those that evaluate to 1. X[1] = ‘ 11 === on

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

28

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.

29

Adding and removing elements

Remove (k. x):
- Let Z be set of points that define
X's membership.
- Output new set key k' =
ppPRF.Puncture(k, Z).

30

Adding and removing elements

Remove (K, x):
- Let Z be set of points that define
X's membership.
- Output new set key k' =

pPRPRE.Puncture(k. Z),

Very likely removes element from set.

31

Adding and removing elements

Remove (K, x):
- Let Z be set of points that define
X's membership.
- Output new set key k' =

pPRPRE.Puncture(k. Z),

Very likely removes element from set.

Punctured key indistinguishable from
freshly sampled key from distribution.

32

Adding and removing elements

Remove (K, x):
- Let Z be set of points that define
X's membership.
- Output new set key k' =

pPRPRE.Puncture(k. 2).

Very likely removes element from set.

Punctured key indistinguishable from
freshly sampled key from distribution.

33

Adding and removing elements

Remove (k. x):
- Let Z be set of points that define
X's membership.
- Output new set key k' =
ppPRF.Puncture(k, Z).

34

Add (k. x):
- Let Z be set of points that define x’s
membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(kK,z)=1 VY z € Z. Outputk’.

Adding and removing elements

Remove (k, x): Add (K, x): _

- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run kK’ = ppPRF.Puncture(k, Z) until

PpPRF.Puncture(k, Z). F(K,z)=1 V z € Z. Output k.

35

Adding and removing elements

Remove (k, x): Add (k. x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run k’ = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(K,z)=1 Vz e Z. Output k.

Always adds element to set.

36

Adding and removing elements

Remove (k, x): Add (k. x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run k’ = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(K,z)=1 Vz e Z. Output k.

Always adds element to set.

Punctured key is indistinguishable from
sampling distribution until finding a set
with x.

37

Adding and removing elements

Remove (k, X): Add (k. x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run kK’ = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(k,z)=1 Vz € Z. Output K.

Always adds element to set.

Punctured key is indistinguishable from
sampling distribution until finding a set
with x.

38

Adding and removing elements

Remove (k,
- LetZ be
X'S mem
- Output n
PpPRF.P

define x’s

Kk, Z) until
ut k.

39

Adding and removing elements

Remove (k, X):

Let Z be set of points that define
X's membership.

Output new set key k' =
ppPRF.Puncture(k, Z).

Add (k, x):

Let Z be set of points that define x’s
membership.
Run k' = ppPRF.Puncture(k, Z) until

F(kK,z)=1 VY z € Z. Outputk’.

Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:

40

Adding and removing elements

Remove (k. X): Add (k, x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run k' = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(k',z)=1 Vz € Z. Output k'.

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:
- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k.,...,k.} where k. are ppPRF keys. Then:

41

Adding and removing elements

Remove (k. X): Add (k, x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run k' = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(k',z)=1 Vz € Z. Output k'.

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:
- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k.,...,k.} where k. are ppPRF keys. Then:
- x €8, _iff Vie{0,.log(n)2}, F(x[i]) @ ... ® Fi(x[i:]) = 1.

42

Adding and removing elements

Remove (k. X): Add (k. x):
- Let Z be set of points that define - Let Z be set of points that define x’s
x's membership. membership.
- Output new set key k' = - Run k' = ppPRF.Puncture(k, Z) until
ppPRF.Puncture(k, Z). F(k',z)=1 Vz € Z. Output k'.

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:
- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k.,...,k.} where k. are ppPRF keys. Then:
- x € S, iff Vi€ {0,.,log(n)/2}, Fe(x[i:]) ® ... ® F(x[i]) = 1.
- We show additions and removals can be done sequentially on each key
k,,....K- and satisfy appropriate notions of privacy.

43

Our results

1. Construct pseudorandom sets 2. Show that we can use such
with the following properties: pseudorandom sets to construct a
a. Concise representation PIR scheme with the complexities

b. Fast membership testing aforementioned.
c. Fast enumeration
d

Adaptability: Supports adding
and removing a consta
of elements while
concise represen

44

Thank you!

Image sources:

45

https://sproutsocial.com/insights/facebook-ad-examples/
https://icon-library.com/icon/key-icon-png-7.html.html
https://www.freepnglogos.com/images/tick-33835.html
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract

Set definition (by example)

- Letn =16, k —ppPRF.Gen() represent our set, and let x =7 = 0111.
- Let z = 0B||x, B= log(log(n)).

appended

X in base 2
B zeroes

—‘OO 0111, — 0/1

z[1:]= 10 0111 === o1
2[2:]= 10111] === o
2::3:: = lj:L:_ ..12&; 0/1
z[4:] = 11| == o1

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

Correctness:

For any input x’ € X, punctured key evaluates to same output as original
key.

X ={X,,., %o}
Puncture

Security:

New key contains no information about original evaluation at punctured
points.

|

Privacy:

New key contains no information about what points were punctured.

47

