
Near-Optimal Private Information Retrieval
with Preprocessing

Arthur Lazzaretti and Charalampos Papamanthou

1

2

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

x ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[x] ⟂

3

x ∊ {0,..,n-1} DB ∊ {0,1}n

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

Client Server

DB[x] ⟂

Privacy:
There exists a PPT simulator A* with no knowledge of x
that can act as Client and Server cannot tell the difference

Applications

4

- Building block for different applications:

Applications

5

Meta-data hiding messaging
[Angel et al., OSDI ‘16]

Private movie streaming
[Gupta et al., USENIX ‘16]

Private ad serving
[Zhong et al., USENIX ‘21]

- Building block for different applications:

Applications

6

Meta-data hiding messaging
[Angel et al., OSDI ‘16]

Private movie streaming
[Gupta et al., USENIX ‘16]

Private ad serving
[Zhong et al., USENIX ‘21]

Bottleneck: Server computation

- Building block for different applications:

7

PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Preprocess:

DB ∊ {0,1}n

Client Server

H ∈ o(n)

8

PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Query (at step i):

H ∊ {0,1}o(n)

xi ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[xi]

9

PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Query (at step i):

H ∊ {0,1}o(n)

xi ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[xi]

DB ∊ {0,1}n

Client Server

H ∈ o(n)

Preprocess:

Our results

10

Scheme Amortized Server
Computation

Amortized Bandwidth Client space Number of servers

Ours Õ(√n) Õ(1) Õ(√n) 1

[Shi et al., CRYPTO ‘21] Õ(√n) Õ(1) Õ(√n) 2

[Corrigan Gibbs et al.,
EUROCRYPT ‘22]

Õ(√n) Õ(√n) Õ(√n) 1

Our results

11

Scheme Amortized Server
Computation

Amortized Bandwidth Client space Number of servers

Ours Õ(√n) Õ(1) Õ(√n) 1

[Shi et al., CRYPTO ‘21] Õ(√n) Õ(1) Õ(√n) 2

[Corrigan Gibbs et al.,
EUROCRYPT ‘22]

Õ(√n) Õ(√n) Õ(√n) 1

Concurrent work [Zhou et al.,
EUROCRYPT ‘23] achieves same

asymptotics from different techniques

Our results

12

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

Our results

13

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

Resulting key must
hide which elements
were operated on.

Our results

14

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

2. Show that we can use such
pseudorandom sets to construct a
PIR scheme with the complexities
aforementioned.

Our results

15

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

2. Show that we can use such
pseudorandom sets to construct a
PIR scheme with the complexities
aforementioned.

Our results

16

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

2. Show that we can use such
pseudorandom sets to construct a
PIR scheme with the complexities
aforementioned.

[Shi et al., CRYPTO ‘21] previously
achieved sets supporting (a)(b)(c) while
allowing for a single removal, our
construction allows for any constant
number of additions and removals.

Starting point

17

- Our starting point is the privately puncturable PRF primitive.

18

Gen Eval Puncture

x ∊ {1,...,M}

y

x1,..,xP ∊ {1,...,M}P

Tool: Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

19

Puncture

X = {x1,..,xP}

For this presentation: Puncture returns a key k’
where:

1. Outputs for points x1,...,xP are ‘re-randomized’.
2. Given k’ adversary cannot figure out which

points were punctured.

Set definition [SACM ‘21]

20

- Given: Privately puncturable PRF F: {0,1}λ x {0,1}* → {0,1}.
- Want: set containing approximately √n elements in {0,...,n-1} picked

from some sampling distribution over {0,...,n-1}.

Set definition [SACM ‘21]

21

- Given: Privately puncturable PRF F: {0,1}λ x {0,1}* → {0,1}.
- Want: set containing approximately √n elements in {0,...,n-1} picked

from some sampling distribution over {0,...,n-1}.

- For each x in {0,...,n-1}:
- x ∈ Sk iff Fk(x[i:]) = 1 ∀i ∈ {0,...,log(n)/2}.

22

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

x in base 2

x = 0111

Set definition (by example)

23

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

24

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] = 111 Fk
0/1

x[2:] = 11 Fk
0/1

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

25

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] = 111 Fk
0/1

x[2:] = 11 Fk
0/1

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

26

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] = 111 Fk
0/1

x[2:] = 11 Fk
0/1

Test membership in Õ(1) time.

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}

27

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] = 111 Fk
0/1

x[2:] = 11 Fk
0/1

Test membership in Õ(1) time.

Enumerate in Õ(√n) time by
starting from all strings of size

log(n)/2 and appending 0/1 only
to those that evaluate to 1.

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}

Set definition (by example)

28

x in base 2

z = 00 0111 Fk
0/1

z[1:] = 0 0111 Fk
0/1

z[2:] = 0111
z[3:] = 111

Fk
0/1

Fk
0/1

Concise representation

Fast membership testing

Fast enumeration

Adaptability

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Set definition (by example)

29

x in base 2

z = 00 0111 Fk
0/1

z[1:] = 0 0111 Fk
0/1

z[2:] = 0111
z[3:] = 111

Fk
0/1

Fk
0/1

Concise representation

Fast membership testing

Fast enumeration

Adaptability ?

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Adding and removing elements

30

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Adding and removing elements

31

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Very likely removes element from set.

Adding and removing elements

32

Punctured key indistinguishable from
freshly sampled key from distribution.

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Very likely removes element from set.

Adding and removing elements

33

Punctured key indistinguishable from
freshly sampled key from distribution.

With some probability, does not remove
or removes other elements.

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Very likely removes element from set.

Adding and removing elements

34

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Adding and removing elements

35

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Uses privately puncturable PRF where
puncture operation is randomized

[Canetti and Chen ‘17].

Adding and removing elements

36

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.

Adding and removing elements

37

Punctured key is indistinguishable from
sampling distribution until finding a set

with x.

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.

Adding and removing elements

38

Punctured key is indistinguishable from
sampling distribution until finding a set

with x.

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.

With some probability, adds other
elements.

Adding and removing elements

39

Remove (k, x):
- Let Z be set of points that define

x’s membership
- Output new set key k’ =

ppPRF.Puncture(k, Z)

Add (k, x):
- Let Z be set of points that define x’s

membership
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

How to make both Add and Remove work together?
Both access the same PRF operation.

Adding and removing elements

40

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Adding and removing elements

41

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Adding and removing elements

42

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

- x ∈ Sk iff ∀i ∈ {0,..,log(n)/2}, Fk1(x[i:]) ⨁ … ⨁ FkC(x[i:]) = 1.

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Adding and removing elements

43

Remove (k, x):
- Let Z be set of points that define

x’s membership.
- Output new set key k’ =

ppPRF.Puncture(k, Z).

Add (k, x):
- Let Z be set of points that define x’s

membership.
- Run k’ = ppPRF.Puncture(k, Z) until

F(k’,z) = 1 ∀z ∈ Z. Output k’.

- Use C privately puncturable PRF keys to define set, where C is the total
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

- x ∈ Sk iff ∀i ∈ {0,..,log(n)/2}, Fk1(x[i:]) ⨁ … ⨁ FkC(x[i:]) = 1.
- We show additions and removals can be done sequentially on each key

k1,...,kC and satisfy appropriate notions of privacy.

Our results

44

1. Construct pseudorandom sets
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding

and removing a constant number
of elements while maintaining
concise representation

2. Show that we can use such
pseudorandom sets to construct a
PIR scheme with the complexities
aforementioned.

Thank you!

45

Image sources:

https://sproutsocial.com/insights/facebook-ad-examples/

https://icon-library.com/icon/key-icon-png-7.html.html

https://www.freepnglogos.com/images/tick-33835.html

https://cacm.acm.org/magazines/2019/9/238971-metada
ta-private-communication-for-the-99/abstract

https://sproutsocial.com/insights/facebook-ad-examples/
https://icon-library.com/icon/key-icon-png-7.html.html
https://www.freepnglogos.com/images/tick-33835.html
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract

46

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.
- Let z = 0B||x, B= log(log(n)).

x in base 2

z = 00 0111

appended
B zeroes

Fk
0/1

z[1:] = 0 0111 Fk
0/1

z[2:] = 0111
z[3:] = 111
z[4:] = 11

Fk
0/1

Fk
0/1

Fk
0/1

Set definition (by example)

Sk= {x : ∀i ∈ {0,..,log(n)/2 +B}, Fk(z[i:]) = 1 for z = 0B || x ˄ x ∈
{0,...,n-1}}

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

47

Puncture

Privacy:
New key contains no information about what points were punctured.

X = {x1,..,xP}

Security:
New key contains no information about original evaluation at punctured
points.

Correctness:
For any input x’ ∉ X, punctured key evaluates to same output as original
key.

