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Private Information Retrieval [CGKM ‘95, KO ‘97,....]

x ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[x] ⟂



3

x ∊ {0,..,n-1} DB ∊ {0,1}n

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

Client Server

DB[x] ⟂

Privacy:
There exists a PPT simulator A* with no knowledge of x 
that can act as Client and Server cannot tell the difference



Applications
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- Building block for different applications: 



Applications
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Meta-data hiding messaging
[Angel et al., OSDI ‘16]

Private movie streaming
[Gupta et al., USENIX ‘16]

Private ad serving
[Zhong et al., USENIX ‘21]

- Building block for different applications: 
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Meta-data hiding messaging
[Angel et al., OSDI ‘16]

Private movie streaming
[Gupta et al., USENIX ‘16]

Private ad serving
[Zhong et al., USENIX ‘21]

Bottleneck: Server computation

- Building block for different applications: 
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PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Preprocess:

DB ∊ {0,1}n

Client Server

H ∈ o(n)
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PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Query (at step i):

H ∊ {0,1}o(n)

xi ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[xi]
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PIR with Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

Query (at step i):

H ∊ {0,1}o(n)

xi ∊ {0,..,n-1} DB ∊ {0,1}n

Client Server

DB[xi]

DB ∊ {0,1}n

Client Server

H ∈ o(n)

Preprocess:
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Scheme Amortized Server 
Computation

Amortized Bandwidth Client space Number of servers

Ours Õ(√n) Õ(1) Õ(√n) 1

[Shi et al., CRYPTO ‘21] Õ(√n) Õ(1) Õ(√n) 2

[Corrigan Gibbs et al., 
EUROCRYPT ‘22]

Õ(√n) Õ(√n) Õ(√n) 1
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Scheme Amortized Server 
Computation

Amortized Bandwidth Client space Number of servers

Ours Õ(√n) Õ(1) Õ(√n) 1

[Shi et al., CRYPTO ‘21] Õ(√n) Õ(1) Õ(√n) 2

[Corrigan Gibbs et al., 
EUROCRYPT ‘22]

Õ(√n) Õ(√n) Õ(√n) 1

Concurrent work [Zhou et al., 
EUROCRYPT ‘23] achieves same 

asymptotics from different techniques
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1. Construct pseudorandom sets 
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding 

and removing a constant number 
of elements while maintaining 
concise representation
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1. Construct pseudorandom sets 
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding 

and removing a constant number 
of elements while maintaining 
concise representation

Resulting key must 
hide which elements 
were operated on.
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1. Construct pseudorandom sets 
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding 

and removing a constant number 
of elements while maintaining 
concise representation

2. Show that we can use such 
pseudorandom sets to construct a 
PIR scheme with the complexities 
aforementioned.

[Shi et al., CRYPTO ‘21]  previously 
achieved sets supporting (a)(b)(c) while 
allowing for a single removal, our 
construction allows for any constant 
number of additions and removals.



Starting point
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- Our starting point is the privately puncturable PRF primitive.
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Gen Eval Puncture

x ∊ {1,...,M}

y

x1,..,xP ∊ {1,...,M}P

Tool: Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]



Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]
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Puncture

X = {x1,..,xP}

For this presentation: Puncture returns a key k’ 
where:

1.  Outputs for points x1,...,xP are ‘re-randomized’.
2. Given k’ adversary cannot figure out which 

points were punctured.



Set definition [SACM ‘21]
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- Given: Privately puncturable PRF F: {0,1}λ x {0,1}* → {0,1}.
- Want: set containing approximately √n elements in {0,...,n-1} picked 

from some sampling distribution over {0,...,n-1}.



Set definition [SACM ‘21]
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- Given: Privately puncturable PRF F: {0,1}λ x {0,1}* → {0,1}.
- Want: set containing approximately √n elements in {0,...,n-1} picked 

from some sampling distribution over {0,...,n-1}.

- For each x in {0,...,n-1}:
- x ∈ Sk iff Fk(x[i:]) = 1 ∀i ∈ {0,...,log(n)/2}.



22

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

x in base 2

x = 0111

Set definition (by example)
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x in base 2

x = 0111

Set definition (by example)

Fk
0/1

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.



24

x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] =   111 Fk
0/1

x[2:] =    11 Fk
0/1

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.
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x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] =   111 Fk
0/1

x[2:] =    11 Fk
0/1

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.
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x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] =   111 Fk
0/1

x[2:] =    11 Fk
0/1

Test membership in Õ(1) time.

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}
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x in base 2

x = 0111

Set definition (by example)

Fk
0/1

x[1:] =   111 Fk
0/1

x[2:] =    11 Fk
0/1

Test membership in Õ(1) time.

Enumerate in Õ(√n) time by 
starting from all strings of size 

log(n)/2 and appending 0/1 only 
to those that evaluate to 1.

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.

Sk= {x : ∀i ∈ {0,..,log(n)/2}, Fk(x[i:]) = 1 ˄ x ∈ {0,...,n-1}}



Set definition (by example)
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x in base 2

z = 00  0111 Fk
0/1

z[1:] =   0  0111 Fk
0/1

z[2:] =       0111
z[3:] =         111

Fk
0/1

Fk
0/1

Concise representation

Fast membership testing

Fast enumeration

Adaptability

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.



Set definition (by example)
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x in base 2

z = 00  0111 Fk
0/1

z[1:] =   0  0111 Fk
0/1

z[2:] =       0111
z[3:] =         111

Fk
0/1

Fk
0/1

Concise representation

Fast membership testing

Fast enumeration

Adaptability ?

- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.



Adding and removing elements

30

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).
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Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Very likely removes element from set.
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Punctured key indistinguishable from 
freshly sampled key from distribution.

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Very likely removes element from set.
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Punctured key indistinguishable from 
freshly sampled key from distribution.

With some probability, does not remove 
or removes other elements.

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Very likely removes element from set.
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Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.
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Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Uses privately puncturable PRF where 
puncture operation is randomized 

[Canetti and Chen ‘17].



Adding and removing elements

36

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.
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Punctured key is indistinguishable from 
sampling distribution until finding a set 

with x.

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.
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Punctured key is indistinguishable from 
sampling distribution until finding a set 

with x.

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

Always adds element to set.

With some probability, adds other 
elements.
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Remove (k, x): 
- Let Z be set of points that define 

x’s membership
- Output new set key k’ = 

ppPRF.Puncture(k, Z)

Add (k, x): 
- Let Z be set of points that define x’s 

membership
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

How to make both Add and Remove work together? 
Both access the same PRF operation.



Adding and removing elements
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- Use C privately puncturable PRF keys to define set, where C is the total 
number of additions + removals we would like to support:

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.
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- Use C privately puncturable PRF keys to define set, where C is the total 
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points 
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.
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- Use C privately puncturable PRF keys to define set, where C is the total 
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points 
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

- x ∈ Sk iff ∀i ∈ {0,..,log(n)/2}, Fk1(x[i:]) ⨁ … ⨁ FkC(x[i:]) = 1.

Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.
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Remove (k, x): 
- Let Z be set of points that define 

x’s membership.
- Output new set key k’ = 

ppPRF.Puncture(k, Z).

Add (k, x): 
- Let Z be set of points that define x’s 

membership.
- Run k’ = ppPRF.Puncture(k, Z) until 

F(k’,z) = 1 ∀z ∈ Z. Output k’.

- Use C privately puncturable PRF keys to define set, where C is the total 
number of additions + removals we would like to support:

- Membership is defined as the XOR of the evaluation of each key on the points 
seen before. Let set key k = {k1,...,kC} where ki are ppPRF keys. Then:

- x ∈ Sk iff ∀i ∈ {0,..,log(n)/2}, Fk1(x[i:]) ⨁ … ⨁ FkC(x[i:]) = 1.
- We show additions and removals can be done sequentially on each key 

k1,...,kC and satisfy appropriate notions of privacy.
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1. Construct pseudorandom sets 
with the following properties:
a. Concise representation
b. Fast membership testing
c. Fast enumeration
d. Adaptability: Supports adding 

and removing a constant number 
of elements while maintaining 
concise representation

2. Show that we can use such 
pseudorandom sets to construct a 
PIR scheme with the complexities 
aforementioned.
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Image sources:

https://sproutsocial.com/insights/facebook-ad-examples/

https://icon-library.com/icon/key-icon-png-7.html.html

https://www.freepnglogos.com/images/tick-33835.html

https://cacm.acm.org/magazines/2019/9/238971-metada
ta-private-communication-for-the-99/abstract

https://sproutsocial.com/insights/facebook-ad-examples/
https://icon-library.com/icon/key-icon-png-7.html.html
https://www.freepnglogos.com/images/tick-33835.html
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract
https://cacm.acm.org/magazines/2019/9/238971-metadata-private-communication-for-the-99/abstract
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- Let n = 16, k ←ppPRF.Gen() represent our set, and let x = 7 = 0111.
- Let z = 0B||x, B= log(log(n)).

x in base 2

z = 00  0111

appended 
B zeroes

Fk
0/1

z[1:] =   0  0111 Fk
0/1

z[2:] =       0111
z[3:] =         111
z[4:] =           11

Fk
0/1

Fk
0/1

Fk
0/1

Set definition (by example)

Sk= {x : ∀i ∈ {0,..,log(n)/2 +B}, Fk(z[i:]) = 1 for z = 0B || x ˄ x ∈ 
{0,...,n-1}}
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Puncture

Privacy:
New key contains no information about what points were punctured.

X = {x1,..,xP}

Security:
New key contains no information about original evaluation at punctured 
points.

Correctness: 
For any input  x’ ∉ X, punctured key evaluates to same output as original 
key.


