

Searching for ELFs in the Cryptographic Forest

TCC 2023

Marc Fischlin

Felix Rohrbach

Technische Universität Darmstadt, Germany

Injective Mode

Injective Mode

pk_{inj}

(Extremely) Lossy Mode

Injective Mode

(Extremely) Lossy Mode

■ ELFs can be used to replace ROM

- ELFs can be used to replace ROM
- Many attempts to replace ROM

- ELFs can be used to replace ROM
- Many attempts to replace ROM
 - Correlation Intractability, Universal Computational Extractors

- ELFs can be used to replace ROM
- Many attempts to replace ROM
 - Correlation Intractability, Universal Computational Extractors
- Extremely Lossy Functions:
 - Standard-ish assumptions
 - Useful for many applications

Exponential decisional k-linear assumption:

$$\left(g,g^{a_1},\ldots,g^{a_k},g^{\sum_i b_i},g^{a_1b_1},\ldots,g^{a_kb_k}\right) \stackrel{c_e}{\approx} \left(g,g^{a_1},\ldots,g^{a_k},g^c,g^{a_1b_1},\ldots,g^{a_kb_k}\right)$$

Generalized version of exponential DDH

Exponential decisional k-linear assumption:

$$\left(g,g^{\mathsf{a}_1},\ldots,g^{\mathsf{a}_k},g^{\sum_i b_i},g^{\mathsf{a}_1b_1},\ldots,g^{\mathsf{a}_kb_k}\right) \stackrel{\mathsf{c_e}}{\approx} \left(g,g^{\mathsf{a}_1},\ldots,g^{\mathsf{a}_k},g^{\mathsf{c}},g^{\mathsf{a}_1b_1},\ldots,g^{\mathsf{a}_kb_k}\right)$$

Generalized version of exponential DDH

Claim: True for e.g. elliptic curves

Exponential decisional k-linear assumption:

$$\left(g,g^{\mathsf{a}_1},\ldots,g^{\mathsf{a}_k},g^{\sum_i b_i},g^{\mathsf{a}_1b_1},\ldots,g^{\mathsf{a}_kb_k}\right) \stackrel{\mathsf{c_e}}{\approx} \left(g,g^{\mathsf{a}_1},\ldots,g^{\mathsf{a}_k},g^{\mathsf{c}},g^{\mathsf{a}_1b_1},\ldots,g^{\mathsf{a}_kb_k}\right)$$

Generalized version of exponential DDH

- Claim: True for e.g. elliptic curves
- Is public-key cryptography necessary?

Exponential decisional k-linear assumption:

$$\left(g,g^{a_1},\ldots,g^{a_k},\underline{g^{\sum_i b_i}},g^{a_1b_1},\ldots,g^{a_kb_k}\right) \overset{c_e}{\approx} \left(g,g^{a_1},\ldots,g^{a_k},\underline{g^c},g^{a_1b_1},\ldots,g^{a_kb_k}\right)$$

Generalized version of exponential DDH

- Claim: True for e.g. elliptic curves
- Is public-key cryptography necessary?
 - Zhandry'16: eOWFs, eCRH might be enough

Exponential decisional k-linear assumption:

$$\left(g,g^{a_1},\ldots,g^{a_k},\underline{g^{\sum_i b_i}},g^{a_1b_1},\ldots,g^{a_kb_k}\right) \stackrel{c_e}{\approx} \left(g,g^{a_1},\ldots,g^{a_k},\underline{g^c},g^{a_1b_1},\ldots,g^{a_kb_k}\right)$$

Generalized version of exponential DDH

- Claim: True for e.g. elliptic curves
- Is public-key cryptography necessary?
 - Zhandry'16: eOWFs, eCRH might be enough
 - Holmgren. Lombardi'18: ELFs from One-Way Product Functions?

What are the minimal assumptions for building ELFs?

No fully black-box construction of ELFs from eOWFs, eCRHFs, OWPFs, ...

- No fully black-box construction of ELFs from eOWFs, eCRHFs, OWPFs, ...
 - Even holds for (moderately) lossy functions!

- No fully black-box construction of ELFs from eOWFs, eCRHFs, OWPFs, . . .
 - Even holds for (moderately) lossy functions!
- No fully black-box construction of key agreement from ELFs

- No fully black-box construction of ELFs from eOWFs, eCRHFs, OWPFs, . . .
 - Even holds for (moderately) lossy functions!
- No fully black-box construction of key agreement from ELFs

Oracle Separation

There exist oracles \mathcal{O} , PSPACE⁺, such that relative to them:

- eOWFs, eCRHFs, OWPFs, ... exist,
- but lossy functions and ELFs do not

Oracle Separation

There exist oracles \mathcal{O} , PSPACE⁺, such that relative to them:

- eOWFs, eCRHFs, OWPFs, ... exist,
- but lossy functions and ELFs do not
- Idea similar to Pietrzak, Rosen, Segev, TCC'12

Inefficient Distinguisher

Inefficient Distinguisher

• q is heavy for f if it appears in f(x) for a poly fraction of all $x \in \{0,1\}^n$

• q is heavy for f if it appears in f(x) for a poly fraction of all $x \in \{0,1\}^n$

Injective

• q is heavy for f if it appears in f(x) for a poly fraction of all $x \in \{0,1\}^n$

Injective *X*₁ x_2 **y**₁

y₁

Lossy

Observations

Observation 1: Lossiness is a global property.

Observations

Observation 1: Lossiness is a global property.

Observation 2: Key generator knows \mathcal{O} at poly many positions

Observations

Observation 1: Lossiness is a global property.

Observation 2: Key generator knows \mathcal{O} at poly many positions

Other positions cannot influence mode (w.h.p.)

• q is heavy for f if it appears in f(x) for a poly fraction of all $x \in \{0,1\}^n$

Injective *X*₁ x_2 **y**₁

Lossy

Heavy Queries are Easy to Find

Heavy Queries are Easy to Find

 $|Q_H|$ polynomial

Heavy Queries are Easy to Find

- $|Q_H|$ polynomial
- \blacksquare With overwhelming probability: All heavy queries are in Q_H

Efficient Distinguisher

Efficient Distinguisher

Oracle Separation

There exist oracles \mathcal{O} , PSPACE⁺, such that relative to them:

- eOWFs, eCRHFs, OWPFs, ... exist,
- but lossy functions and ELFs do not
- \Rightarrow No fully BB construction of ELFs from anything in Oraclecrypt

Overview

Overview

The Simulation Lemma

Reuse Impagliazzo-Rudich result (No KA relative to a random permutation)

The Simulation Lemma

- Reuse Impagliazzo-Rudich result (No KA relative to a random permutation)
- Construct (inefficient) ELF oracle Gen^Π, Eval^Π

The Simulation Lemma

- Reuse Impagliazzo-Rudich result (No KA relative to a random permutation)
- Construct (inefficient) ELF oracle Gen^Π, Eval^Π

Lemma (Simulation Lemma, informal)

There exists an efficient algorithm $\operatorname{Wrap}^{\Pi}$ such that access to $\operatorname{Wrap}^{\Pi}$ or the oracles Gen^{Π} , $\operatorname{Eval}^{\Pi}$ is indistinguishable. Further, Wrap has no (global) state.

Assume KA exists

- Assume KA exists
- Introducing Wrap does not break completeness

- Assume KA exists
- Introducing Wrap does not break completeness

- Assume KA exists
- Introducing Wrap does not break completeness
- Successful adversary exists (Impagliazzo, Rudich, STOC'89)

- Assume KA exists
- Introducing Wrap does not break completeness
- Successful adversary exists (Impagliazzo, Rudich, STOC'89)
- Removing Wrap does not break attack f

Conclusion

- No fully black-box construction of ELFs from Oraclecrypt primitives
- No fully black-box construction of KA from ELFs

Conclusion

- No fully black-box construction of ELFs from Oraclecrypt primitives
- No fully black-box construction of KA from ELFs

Thank you! https://ia.cr/2023/1403

