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* Any basis (b, ..., bn) of a vector space describes a lattice L = Zb1 + ... + Zbs

* SVP: find the non-zero point in L closest to the origin (up to approx. factor...)
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K=Q[X]/ (Xn+1)is a field, and a J-vector space of dimension n = 2r
O =7[X]/ (X +1)is a lattice in K... and a subring!
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Some lattices have "something extra"...
K=Q[X]/ (Xn+1)is a field, and a J-vector space of dimension n = 2r
O =7[X]/ (X +1)is a lattice in K... and a subring!

An ideal lattice is a lattice a ¢ K such that Qa c a
An ideal lattice is integral if a c O

An integral ideal is prime if it is not a product of other integral ideals

Any ideal lattice is of the form a =[] pi&i where pic QO is prime and eie Z
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Ideal-SVP

* |deal lattices are important:

* Led to the first fully homomorphic encryption scheme [GentryQ9]

* Simplest case of module lattices, used in real world (KYBER, DILITHIUM)
* |deal lattices are special: is SVP as hard?

* There are specific algorithms for SVP in ideal lattices

* |deal-SVP still considered hard, but one can reach better approximation
factors than SVP in generic lattices
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Average-case Ideal-SVP

* Previous work, random self-reducibility for two distributions: P" -'deal

Svp

* [GentryO9] Inverse of uniformly random prime ideal of small norm
* Non-integral... works for [GentryO9|’s purpose
e [(BDPW20] Uniform ideals for the Haar measure of large norm
Haar-.,dea,- Geometrically canonical, rich theory! but large norms...
~Svp
* This work: uniformly random prime ideal of small norm p"'dea'-st
* |Integral, unlike [GentryO9], and small, unlike [BDPW?20]
* Composes with NTRU reductions! Links NTRU to worst-case Ideal-SVP
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Pi-Ideal-SVP reduces to P-Ideal-SVP

® Input: an ideal a = p~ with p uniform prime of bounded norm

® Output: x € a small

1.
2,

5. Returnsp-yeb -(bp)'=p and

Let sy € p small (solve P-Ideal-SVP for p, uniform prime of bounded norm);

Let (b, y) — SampleIdeal(y.sy) Need factoring oracle

m) b is a uniform integral ideal of bounded norm, and y € (bp)" is small

£ bis not prime, abort; SUCCESS Proba = density of primes

Let sp € b small (solve P-ldeal-SVP for b, uniform prime of bounded norm);
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® First distribution over NTRU instances with a polynomial modulus whose
hardness is supported by a worst-case lattice problem

® Caveat: sampling DNTRU needs factoring oracle



