Ideal-SVP is hard for small-norm uniform prime ideals

Benjamin Wesolowski, CNRS and ENS de Lyon – TCC 2023, December 2, 2023, Taipei, Taiwan

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, Benjamin Wesolowski

Ideal-SVP

Basis

• Any basis $(b_1, ..., b_n)$ of a vector space describes a lattice $L = \mathbb{Z}b_1 + ... + \mathbb{Z}b_n$

Shortest vector

• **SVP**: find the non-zero point in L closest to the origin (up to approx. factor...)

Basis

- Some lattices have "something extra"...
- $K = \mathbb{Q}[X] / (X^n + 1)$ is a **field**, and a **Q-vector space** of dimension $n = 2^r$
- $\mathcal{O} = \mathbb{Z}[X] / (X^n + 1)$ is a lattice in K... and a subring!
- An **ideal lattice** is a lattice $\mathfrak{a} \subset K$ such that $\mathcal{O}\mathfrak{a} \subset \mathfrak{a}$

- Some lattices have "something extra"...
- $K = \mathbb{Q}[X] / (X^n + 1)$ is a **field**, and a Q-vector space of dimension $n = 2^r$
- $\mathcal{O} = \mathbb{Z}[X] / (X^n + 1)$ is a lattice in K... and a **subring**!
- An **ideal lattice** is a lattice $\mathfrak{a} \subset K$ such that $\mathcal{O}\mathfrak{a} \subset \mathfrak{a}$
- An ideal lattice is **integral** if $a \in O$

- Some lattices have "something extra"...
- $K = \mathbb{Q}[X] / (X^n + 1)$ is a **field**, and a Q-vector space of dimension $n = 2^r$ • $\mathcal{O} = \mathbb{Z}[X] / (X^n + 1)$ is a lattice in K... and a **subring**!
- An **ideal lattice** is a lattice $\mathfrak{a} \subset K$ such that $\mathcal{O}\mathfrak{a} \subset \mathfrak{a}$
- An ideal lattice is **integral** if $\mathfrak{a} \subset \mathcal{O}$
- An integral ideal is **prime** if it is not a product of other integral ideals

- Some lattices have "something extra"...
- $K = \mathbb{Q}[X] / (X^n + 1)$ is a **field**, and a Q-vector space of dimension $n = 2^r$ • $\mathcal{O} = \mathbb{Z}[X] / (X^n + 1)$ is a lattice in K... and a subring!
- An **ideal lattice** is a lattice $\mathfrak{a} \subset K$ such that $\mathcal{O}\mathfrak{a} \subset \mathfrak{a}$
- An ideal lattice is **integral** if $\mathfrak{a} \subset \mathcal{O}$
- An integral ideal is **prime** if it is not a product of other integral ideals • Any ideal lattice is of the form $\mathfrak{a} = \prod \mathfrak{p}_i^{e_i}$ where $\mathfrak{p}_i \subset \mathcal{O}$ is prime and $e_i \in \mathbb{Z}$

Ideal-SVP

- Ideal lattices are **important**:

• Led to the first fully homomorphic encryption scheme [Gentry09] • Simplest case of module lattices, used in real world (KYBER, DILITHIUM)

Ideal-SVP

- Ideal lattices are **important**:
 - Led to the first fully homomorphic encryption scheme [Gentry09]
 - Simplest case of module lattices, used in real world (KYBER, DILITHIUM)
- Ideal lattices are **special**: is SVP as hard?
 - There are specific algorithms for SVP in ideal lattices
 - Ideal-SVP still considered hard, but one can reach better approximation factors than SVP in generic lattices

Is Ideal-SVP hard on average?

Is Ideal-SVP hard on average?

• We want random self-reducibility: if Ideal-SVP can be solved for random instances, then Ideal-SVP can be solved for any instance...

Is Ideal-SVP hard on average? For what distribution?

• We want random self-reducibility: if Ideal-SVP can be solved for random instances, then Ideal-SVP can be solved for any instance...

• Previous work, random self-reducibility for two distributions:

- Previous work, random self-reducibility for two distributions:
- P-1-Ideal-SVP • [Gentry09] Inverse of uniformly random prime ideal of small norm
 - Non-integral... works for [Gentry09]'s purpose

- Previous work, random self-reducibility for two distributions:
- P-1-Ideal-SVP • [Gentry09] Inverse of uniformly random prime ideal of small norm
 - Non-integral... works for [Gentry09]'s purpose
 - [BDPW20] **Uniform ideals for the Haar measure** of large norm
- Haar-Ideal-SVP Geometrically canonical, rich theory! but large norms...

- Previous work, random self-reducibility for two distributions:
- P-1-Ideal-SVP • [Gentry09] Inverse of uniformly random prime ideal of small norm
 - Non-integral... works for [Gentry09]'s purpose
 - [BDPW20] **Uniform ideals for the Haar measure** of large norm

Haar-Ideal-SVp

- P-Ideal-SVP • This work: uniformly random prime ideal of small norm Integral, unlike [Gentry09], and small, unlike [BDPW20] Composes with NTRU reductions! Links NTRU to worst-case Ideal-SVP

Average-case Ideal-SVP

Geometrically canonical, rich theory! but large norms...

[Gentry09] New ≤ P⁻¹-IdeaI-SVP ≤ P-IdeaI-SVP Worst-case Ideal-SVP

Method

[Gentry09] New Worst-case P-1-Ideal-SVP P-Ideal-SVP < Ideal-SVP poly-time given a factoring oracle

Method

P⁻¹-Ideal-SVP reduces to P-Ideal-SVP

- Input: an ideal $a = p^{-1}$ with p uniform prime of bounded norm
- **Output:** $x \in \mathfrak{a}$ small

P⁻¹-Ideal-SVP reduces to P-Ideal-SVP

- Input: an ideal $a = p^{-1}$ with p uniform prime of bounded norm
- **Output:** $x \in \mathfrak{a}$ small
 - **1.** Let $s_{\mathfrak{p}} \in \mathfrak{p}$ small (solve P-Ideal-SVP for \mathfrak{p} , uniform prime of bounded norm); **2.** Let $(\mathfrak{b}, y) \leftarrow \mathsf{SampleIdeal}(\mathfrak{p}, \mathfrak{s}_{\mathfrak{p}})$
 - - \implies b is a uniform integral ideal of bounded norm, and $y \in (bp)^{-1}$ is small
 - **3.** If b is not prime, **abort**;
 - **4.** Let $s_{\mathfrak{b}} \in \mathfrak{b}$ small (solve P-Ideal-SVP for \mathfrak{b} , uniform prime of bounded norm);
 - **5.** Return $s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot (\mathfrak{b}\mathfrak{p})^{-1} = \mathfrak{p}^{-1}$

P-1-Ideal-SVP reduces to P-Ideal-SVP

- Input: an ideal $a = p^{-1}$ with p uniform prime of bounded norm
- **Output:** $x \in \mathfrak{a}$ small
 - **1.** Let $s_{\mathfrak{p}} \in \mathfrak{p}$ small (solve P-Ideal-SVP for \mathfrak{p} , uniform prime of bounded norm);
 - **2.** Let $(\mathfrak{b}, y) \leftarrow \text{SampleIdeal}(\mathfrak{p}, \mathfrak{s}_{\mathfrak{p}})$ Need factoring oracle
 - → \mathfrak{b} is a uniform integral ideal of bounded norm, and $y \in (\mathfrak{b}p)^{-1}$ is small
 - **3.** If b is not prime, **abort**;
 - **4.** Let $s_{\mathfrak{b}} \in \mathfrak{b}$ small (solve P-Ideal-SVP for \mathfrak{b} , uniform prime of bounded norm);
 - **5.** Return $s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot (\mathfrak{b}\mathfrak{p})^{-1} = \mathfrak{p}^{-1}$

P-1-Ideal-SVP reduces to P-Ideal-SVP

- Input: an ideal $a = p^{-1}$ with p uniform prime of bounded norm
- **Output:** $x \in \mathfrak{a}$ small
 - **1.** Let $s_{\mathfrak{P}} \in \mathfrak{P}$ small (solve P-Ideal-SVP for \mathfrak{P} , uniform prime of bounded norm);
 - **2.** Let $(\mathfrak{b}, y) \leftarrow \text{SampleIdeal}(\mathfrak{p}, \mathfrak{s}_{\mathfrak{p}})$ Need factoring oracle
 - $\implies \mathfrak{b}$ is a uniform integral ideal of bounded norm, and $y \in (\mathfrak{b}\mathfrak{p})^{-1}$ is small
 - 3. If b is not prime, abort; SUCCESS proba = density of primes
 - **4.** Let $s_{\mathfrak{b}} \in \mathfrak{b}$ small (solve P-Ideal-SVP for \mathfrak{b} , uniform prime of bounded norm);
 - **5.** Return $s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot (\mathfrak{b}\mathfrak{p})^{-1} = \mathfrak{p}^{-1}$

P-1-Ideal-SVP reduces to P-Ideal-SVP

- Input: an ideal $\mathfrak{a} = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of bounded norm
- **Output:** $x \in \mathfrak{a}$ small
 - **1.** Let $s_{\mathfrak{P}} \in \mathfrak{P}$ small (solve P-Ideal-SVP for \mathfrak{P} , uniform prime of bounded norm);
 - **2.** Let $(\mathfrak{b}, y) \leftarrow \text{SampleIdeal}(\mathfrak{p}, \mathfrak{s}_{\mathfrak{p}})$ Need factoring oracle
 - $\implies \mathfrak{b}$ is a uniform integral ideal of bounded norm, and $y \in (\mathfrak{b}\mathfrak{p})^{-1}$ is small
 - 3. If b is not prime, abort; SUCCESS proba = density of primes
 - **4.** Let $s_{\mathfrak{b}} \in \mathfrak{b}$ small (solve P-Ideal-SVP for \mathfrak{b} , uniform prime of bounded norm);
 - **5.** Return $s_b \cdot y \in b \cdot (b_p)^{-1} = p^{-1}$ **S**_b small and y small so $s_b \cdot y$ small

• [PS21] gives a Karp reduction from Ideal-SVP to NTRU [HPS96]

Application to NTRU

Application to NTRU

- [PS21] gives a Karp reduction from Ideal-SVP to NTRU [HPS96]
- New NTRU distribution D^{NTRU}: sample uniform small prime p, and create NTRU instance (and trapdoor) via the [PS21] reduction

Application to NTRU

- [PS21] gives a Karp reduction from Ideal-SVP to NTRU [HPS96]
- New NTRU distribution D^{NTRU}: sample uniform small prime p, and create NTRU instance (and trapdoor) via the [PS21] reduction

[PS21]NTRU for DNTRU>P-ideal-SVP

Application to NTRU

- [PS21] gives a Karp reduction from Ideal-SVP to NTRU [HPS96]
- New NTRU distribution D^{NTRU}: sample uniform small prime p, and create NTRU instance (and trapdoor) via the [PS21] reduction

[PS21]NTRU for DNTRU>P-ideal-SVP

- First distribution over NTRU instances with a polynomial modulus whose hardness is supported by a worst-case lattice problem
- Caveat: sampling DNTRU needs factoring oracle

