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Leveraging the no-cloning principle of quantum mechanics
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Quantum Copy-Protection

Quantum no-cloning → Preventing Illegal Distribution of Software

Ch A
CopyProtect(f )

BxB

ansB

xC

ansC

C

A

A creates a bipartite state: one partition to B and the other to C
(A,B, C) wins if ansB = f (xB) and ansC = f (xC).
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Quantum Copy-Protection

• Introduced by Aaronson in 2009.

• Impossibility for Contrived Unlearnable Functionalities [A-LaPlaca’21].

• Feasibility: Copy-Protection for Pseudorandom Functions

[Coladangelo-Liu-Liu-Zhandry’21]

• Feasibility: Copy-Protection for Decryption Functionalities

[Coladangelo-Liu-Liu-Zhandry’21]

• Feasibility: Copy-Protection for Signing Functionalities

[Liu-Liu-Qian-Zhandry’21]
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Quantum Copy-Protection
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Basing post-quantum iO on concrete assumptions: challenging open problem!
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Our Goal

• Weaker (yet meaningful) definitions of copy-protection

• Base it on weaker assumptions

Our Work: Revocable Cryptography from Learning With Errors

• Revocable Public-Key Encryption

• Revocable Fully Homomorphic Encryption

• Revocable Pseudorandom Functions
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Revocable Public-Key Encryption

Informal:

• Challenger gives a quantum decryption key |ψsk⟩ to adversary A.

• Revocation phase:

• A returns a state ρ back to the challenger.

• Challenger checks if ρ is the same as |ψsk⟩ by performing a projective measurement M.

• The resulting residual state handed over to C.

• Security Guarantee: the following should not simultaneously hold:

• Revocation succeeds and,

• C can break the semantic security of public-key encryption.

In the language of [ALP21]: finite-term key leasing except that C is malicious.
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Revocable Public-Key Encryption

Quantum decryption key: |ψsk⟩.

Ch A
|ψsk⟩

M

ansB

ctb

ansC

C

A

‘

• M = {|ψsk⟩⟨ψsk|, I − |ψsk⟩⟨ψsk|}
• ct0 = Enc(pk, 0) and ct1 = Enc(pk, 1).

|Pr [ansB = 0 and ansC = 1|b = 0]− Pr [ansB = 0 and ansC = 1|b = 1]| ≤ negl(λ)
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Revocable Pseudorandom Functions

PRF : {0, 1}λ × {0, 1}n → {0, 1}m.
Quantum PRF evaluation key: |ψk⟩.

Ch A
|ψk⟩

M

ansB

(x , yb)

ansC

C

A

‘

|Pr [ansB = 0 and ansC = 1|b = 0]− Pr [ansB = 0 and ansC = 1|b = 1]| ≤ negl(λ)
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Our Results

Result #1: Assuming simultaneous dual-Regev conjecture,

Dual Regev public-key encryption is key revocable.

Result #2: Assuming simultaneous dual-Regev conjecture,

Dual Regev fully homomorphic encryption is key revocable.

Result #3: Assuming simultaneous dual-Regev conjecture,

there exist revocable pseudorandom functions.
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Not studied before!
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Our Results

Result #1: Assuming simultaneous dual-Regev conjecture,

Dual Regev public-key encryption is key revocable.

Result #2: Assuming simultaneous dual-Regev conjecture,

Dual Regev fully homomorphic encryption is key revocable.

Result #3: Assuming simultaneous dual-Regev conjecture,

there exist revocable pseudorandom functions.

Prior Work: Copy-protecting pseudorandom functions based on iO
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Classical Revocation

Ch A
|ψsk⟩

Ver

ansB

ctb

ansC

C

A

‘

• Ver: verification of classical certificate of revocation.

• ct0 = Enc(pk, 0) and ct1 = Enc(pk, 1).
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Our Results

Result #4: Assuming simultaneous dual-Regev classical revocation conjecture,

Dual Regev public-key encryption is key revocable with classical revocation.

Result #5: Assuming simultaneous dual-Regev classical revocation conjecture,

Dual Regev fully-homomorphic encryption is key revocable with classical revocation.

Result #6: Assuming simultaneous dual-Regev classical revocation conjecture,

there exist revocable pseudorandom functions with classical revocation.
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High Level Ideas
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Key-revocable Dual-Regev Encryption

Key generation: The public key is A = [Ā | y] ∈ Zn×m
q for a random matrix Ā← Zn×(m−1)

q and

some y ∈ Zn
q.

Classical decryption key:

Short x ∈ Zm s.t.

y = Ā · x (mod q)

Quantum decryption key:

|ψy⟩ =
∑
x∈Zm:

Āx=y (mod q)

ρσ(x)|x⟩

Enc(pk, µ): CT ≈
(
s⊺A, s⊺y + µ · ⌊ q2 ⌋

)
.
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Proof Idea

Ch A
|ψy⟩

M

ansB

ctb

ansC

C

A

‘
• M = {|ψy⟩⟨ψy|, I − |ψy⟩⟨ψy|}
• ct0 = Enc(pk, 0) and ct1 = Enc(pk, 1).
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Initial Observations

Ch A
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ctb
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C

A

‘
• ct0 = Enc(pk, 0) and ct1 = Enc(pk, 1).
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Initial Observations
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C
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‘
• ct0 ≈ (s⊺A, s⊺y) and ct1 ≈
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)
.
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Initial Observations

Ch A
|ψy⟩

ctb

ansC

C

A

‘ • ct0 ≈ (s⊺A, s⊺y) and ct1 ≈
(
s⊺A, s⊺y + ⌊ q2 ⌋

)
.

• ct0 ≈ (u, ⟨u, x0⟩) and ct1 ≈
(
s⊺A, ⟨u, x0⟩+ ⌊ q2 ⌋

)
,

where Ax0 = y and ∥x0∥∞ = O(poly(n)).

Using gaussian collapsing [Poremba’23] and leakage-resilience techniques [Dodis et al.’10].
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Initial Observations

Ch A
|ψy⟩

ctb

ansC

C

A

‘
• ct0 ≈ (s⊺A, s⊺y) and ct1 ≈

(
s⊺A, s⊺y + ⌊ q2 ⌋

)
.

• ct0 ≈ (u, ⟨u, x0⟩) and ct1 ≈
(
s⊺A, ⟨u, x0⟩+ ⌊ q2 ⌋

)
• Using Quantum Goldreich-Levin over Zq: extract x0
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‘
• M = {|ψy⟩⟨ψy|, I − |ψy⟩⟨ψy|}
• ct0 = Enc(pk, 0) and ct1 = Enc(pk, 1).

Simultaneous dual-Regev Conjecture =⇒ Simultaneous revocation and extraction of x0.
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Ch A
|ψy⟩

Π

x1 x0

Ext

A

‘ • M = {|ψy⟩⟨ψy|, I − |ψy⟩⟨ψy|}
• Π = {|x⟩⟨x|}x∈Zm

q

With inverse polynomial probability:

• Ax0 = y,Ax1 = y,

• x0, x1 are short,

• x0 ̸= x1.

this breaks SIS!
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Revocable FHE and Pseudorandom Functions

Revocable FHE: Dual version of GSW fully homomorphic encryption.

Revocable Pseudorandom Functions:

Use Shift-Hiding pseudorandom functions (introduced by [Peikert-Shiehian’18]).

• Using evaluation key skF , compute output of PRF on x shifted by F (x):

PRF(k , x) + F (x) = ⌊sA+ F (x)⌉

• Hiding property: For any function F and zero function Z,

{skZ} ≈c {skF}
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Revocable Pseudorandom Functions

Idea:

• Set the output of the PRF on input x ∈ {0, 1}n to be:

⌊Sxy⌉

(Sx ∈ Zn×n
q )

• Set the quantum decryption key to be:

(skZ , |ψy⟩)

27



Conclusion

Our Work: Weaker (yet meaningful) notions of copy-protection from learning with errors

Open Problems:

• Prove our construction is secure from learning with errors:

• Subsequent Work: [Chardouvelis-Goyal-Jain-Liu’23] Assuming LWE, there exists PKE and

FHE with classical communication

• Revocation for other cryptographic functionalities from LWE.

• Digital signatures?

• Copy-Protection from LWE

• Identify interesting cryptographic functionalities

Thanks!
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