Lower Bounds for Anonymous Whistleblowing Willy Quach, LaKyah Tyner, Daniel Wichs

• Friends having public conversation over twitter or Facebook

- Friends having public conversation over twitter or Facebook
- Everyone knows the know sent each message

- lacksquare
- Without revealing identity

Anonymous Transfer [Agricola, Couteau, Maier 22] Bob ... Alice Freddy Carl

Anyone can recover secret message (even an outsider) without discovering the sender

Ideal for facilitating whistleblowing

- Ideal for facilitating whistleblowing
 - Whistleblowers act in an untrusted environment

- Ideal for facilitating whistleblowing
 - Whistleblowers act in an untrusted environment
 - Face risk of punishment

- Ideal for facilitating whistleblowing
 - Whistleblowers act in an untrusted environment
 - Face risk of punishment
 - Can we mitigate risk using cryptographic techniques?

• Anonymous Transfer (AT) introduced by [ACM22].

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results
 - Positive result: a very weak form of AT is possible

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results
 - Positive result: a very weak form of AT is possible
 - Negative result: a very strong form of AT is impossible

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results
 - Positive result: a very weak form of AT is possible
 - Negative result: a very strong form of AT is impossible
 - Leaves a big unknown gap between them

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results
 - Positive result: a very weak form of AT is possible
 - Negative result: a very strong form of AT is impossible
 - Leaves a big unknown gap between them
 - Our work closes the gap by extending the negative results

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

- Anonymous Transfer (AT) introduced by [ACM22].
 - traffic.
 - relay nodes) to actively participate.
- - [ACM22] has two results
 - Positive result: a very weak form of AT is possible
 - Negative result: a very strong form of AT is impossible
 - Leaves a big unknown gap between them
 - Our work closes the gap by extending the negative results
 - Their very weak form of AT is the best we can hope for

• Main novelty: no reliance on any trusted parties beyond non-senders generating dummy

• Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor

• Focuses on *c*-round, 2 party AT (sender, non-sender)

- Focuses on *c*-round, 2 party AT (sender, non-sender)
 - Lower bounds imply ones of N-party [ACM22]

- Focuses on *c*-round, 2 party AT (sender, non-sender)
 - Lower bounds imply ones of N-party [ACM22]
- AT algorithms:

- Focuses on *c*-round, 2 party AT (sender, non-sender)
 - Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
 - Trusted Setup \rightarrow crs

- Focuses on *c*-round, 2 party AT (sender, non-sender)
 - Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
 - Trusted Setup \rightarrow crs
 - Transfer(μ) $\rightarrow \pi$

- Focuses on *c*-round, 2 party AT (sender, non-sender)
 - Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
 - Trusted Setup \rightarrow crs
 - Transfer(μ) $\rightarrow \pi$
 - Reconstruct(π) $\rightarrow \mu'$

- Focuses on *c*-round, 2 party AT (sender, non-sender) Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
 - Trusted Setup \rightarrow crs
 - Transfer(μ) $\rightarrow \pi$
 - Reconstruct(π) $\rightarrow \mu'$

Correctness

For all secret messages $\mu \in \{0,1\}^{\ell}$ $\Pr[\mu' \neq \mu]$ is negligible

- Focuses on *c*-round, 2 party AT (sender, non-sender) Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
 - Trusted Setup \rightarrow crs
 - Transfer(μ) $\rightarrow \pi$
 - Reconstruct(π) $\rightarrow \mu'$

Correctness

For all secret messages $\mu \in \{0,1\}^{\ell}$

 $\Pr[\mu' \neq \mu]$ is negligible

 δ -anonymity "Distinguishing Advantage" For all PPT D and all $\mu \in \{0,1\}^{\ell}$ $|\Pr[D(\pi^A) = 1] - \Pr[D(\pi^B) = 1]| \le \delta$

[ACM22] Negative Result

Cannot get negligible anonymity δ against all poly-time adversaries

[ACM22] Negative Result

Cannot get negligible anonymity δ against all poly-time adversaries

[ACM22] Positive Result

AT with anonymity $\delta = 1/c$ against fine-grained adversaries whose runtime is O(c) x honest parties. (strong assumptions)

[ACM22] Negative Result

Cannot get negligible anonymity δ against all poly-time adversaries

Big Gap: Can we get "decent" anonymity (say $\delta = .01$) against all poly adversaries? Can we get negligible anonymity against fine grained adversaries? Our results: NO

[ACM22] Positive Result

AT with anonymity $\delta = 1/c$ against fine-grained adversaries whose runtime is O(c) x honest parties. (strong assumptions)

[ACM22] Negative Result

Cannot get negligible anonymity δ against all poly-time adversaries

Big Gap: Can we get "decent" anonymity (say $\delta = .01$) against all poly adversaries? Can we get negligible anonymity against fine grained adversaries?

Our results: NO

Our Negative Result 1

Cannot get security against all poly adversaries with any non-trivial anonymity $\delta{<}1$

[ACM22] Positive Result

AT with anonymity $\delta = 1/c$ against fine-grained adversaries whose runtime is O(c) x honest parties. (strong assumptions)

[ACM22] Negative Result

Cannot get negligible anonymity δ against all poly-time adversaries

Big Gap: Can we get "decent" anonymity (say $\delta = .01$) against all poly adversaries? Can we get negligible anonymity against fine grained adversaries?

Our results: NO

Our Negative Result 1

Cannot get security against all poly adversaries with any non-trivial anonymity $\delta{<}1$

[ACM22] Positive Result

AT with anonymity $\delta = 1/c$ against fine-grained adversaries whose runtime is O(c) x honest parties. (strong assumptions)

Our Negative Result 2

Cannot get negligible anonymity even against fine-grained adversaries

Our Main Contribution Attack on anonymity of AT

Our Main Contribution Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender

Our Main Contribution Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender Consider the notion of "progress" towards correctly recovering message

Goal: Given transcript π of the protocol, identify the sender Consider the notion of "progress" towards correctly recovering message

• "progress" of partial transcript $\pi[i]$

Goal: Given transcript π of the protocol, identify the sender Consider the notion of "progress" towards correctly recovering message

• "progress" of partial transcript $\pi[i]$

$$\pi = \{m_1, \ldots, m_i, m_{i+1}, \ldots, m_{n_i}\}$$

 $\{m_{|\pi|}\} \to \pi[i] = \{m_1, \dots, m_i, r_{i+1}, \dots, r_{|\pi|}\}$

Goal: Given transcript π of the protocol, identify the sender Consider the notion of "progress" towards correctly recovering message

• "progress" of partial transcript $\pi[i]$

$$\pi = \{m_1, \ldots, m_i, m_{i+1}, \ldots, m_{|\pi|}\}$$

The party who makes the most progress is the sender

 π_{n} $\} \to \pi[i] = \{m_{1}, \dots, m_{i}, r_{i+1}, \dots, r_{n}\}$

 $p_i :=$ probability of correctly recovering message after the *i*-th message associated with $\pi[i]$

• Assign progress from $p_{i-1} \rightarrow p_i$ to A

- Assign progress from $p_{i-1} \rightarrow p_i$ to A
- Main insight: Non-sender messages do not (on expectation) change p_i

Blueprint: Estimate each party's contribution

Blueprint: Estimate each party's contribution Argue:

Blueprint: Estimate each party's contribution Argue:

1. The contribution of the non-sender is small

Blueprint: Estimate each party's contribution Argue:

- The contribution of the non-sender is small 1.
- the sender

2. Total contribution is large so, the party who contributed the most must be

 $p_{|\pi|-1} p_{|\pi|}$ p_i

- Abstract blueprint into the Cover Cheating Game
- Between two player stand stand

- Abstract blueprint into the Cover Cheating Game
- Between two player is and is

- Abstract blueprint into the Cover Cheating Game
- Between two player is and is

- Abstract blueprint into the Cover Cheating Game
- Between two player is and is

0

- Abstract blueprint into the Cover Cheating Game
- Between two player is and is

0

- Abstract blueprint into the Cover Cheating Game
- Between two player stand stand

- Abstract blueprint into the Cover Cheating Game
- Between two player stand stand

- Abstract blueprint into the Cover Cheating Game
- Between two player stand stand

• Uses the fact that non-biased player cannot change state much

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender
- Consider multiplicative progress

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender
- Consider multiplicative progress
 - Progress from p_{i-1} to p_i is represented by

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender
- Consider multiplicative progress
 - Progress from p_{i-1} to p_i is represented by

$$r_i = \frac{p_i}{p_{i-1}}$$

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender
- Consider multiplicative progress
 - Progress from p_{i-1} to p_i is represented by

Total progress is

$$r_i = \frac{p_i}{p_{i-1}}$$

- Uses the fact that non-biased player cannot change state much
 - If p_{i-1} is close to zero then p_i can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
 - Larger progress made close to zero is made by the sender
- Consider multiplicative progress
 - Progress from p_{i-1} to p_i is represented by

Total progress is

 $\prod_i r_i$:

$$r_{i} = \frac{r_{i}}{p_{i-1}}$$
$$= \prod_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$$

 p_i

Total progress is

Total progress is

 $\Pi_{i} r_{i} = \Pi_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$

Total progress is

• One player must have progress

 $\Pi_{i} r_{i} = \Pi_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$

Total progress is

 $\Pi_i r_i =$

One player must have progress

$$= \prod_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$$
$$\geq \sqrt{\frac{p_{f}}{p_{0}}}$$

Total progress is

 $\prod_i r_i =$

• One player must have progress

• Let N be the set of indices for non-biased player, then

$$= \prod_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$$
$$\geq \sqrt{\frac{p_{f}}{p_{0}}}$$

• Total progress is

 $\prod_i r_i =$

• One player must have progress

- Let N be the set of indices for non-biased player, then

$$= \prod_{i} \frac{p_{i}}{p_{i-1}} = \frac{p_{f}}{p_{0}}$$
$$\geq \sqrt{\frac{p_{f}}{p_{0}}}$$

 $E[\prod_{i \in N} r_i] = 1$

Total progress is

• One player must have progress

• Let N be the set of indices for non-biased player, then

and by Markov the probability that $\prod_{i \in N} r_i \ge \sqrt{2}$

$$\Pi_i r_i = \Pi_i \frac{p_i}{p_{i-1}} = \frac{p_f}{p_0}$$
$$\geq \sqrt{\frac{p_f}{p_0}}$$

 $E[\prod_{i \in N} r_i] = 1$

$$\frac{\overline{p_f}}{p_0} \text{ is less than or equal to } \sqrt{\frac{p_0}{p_f}}$$

Total progress is

 $\prod_{i \in [2c]} r_i =$

• One player must have progress

• Let N be the set of indices for non-biased player, then and by Markov

 $\Pr[\prod_{i \in N} r]$

$$= \prod_{i \in [2c]} \frac{p_i}{p_{i-1}} = \frac{p_f}{p_0}$$

$$\geq \sqrt{\frac{p_f}{p_0}}$$

 $E[\prod_{i \in N} r_i] = 1$

$$i_i \ge \sqrt{\frac{p_f}{p_0}} \le \sqrt{\frac{p_0}{p_f}}$$

Total progress is

One player must have progress

• Let N be the

and by Marl

 $\Pi_{i \in [2c]} r_i = \Pi_{i \in [2c]} \frac{p_i}{p_{i-1}} = \frac{p_f}{p_0}$

Total progress is

One player must have progress

Estimate each p_i

• Let N be the

and by Mark

 $\Pi_{i \in [2c]} r_i = \Pi_{i \in [2c]} \frac{p_i}{p_{i-1}} = \frac{p_f}{p_0}$

Total progress is

One player must have progress

- **1.** Estimate each p_i
- 2. Compute contribution of each player

• Let N be the

and by Mark

 $\Pr[\prod_{i \in N} n]$

 $\Pi_{i\in[2c]}r_i = \Pi_{i\in[2c]}\frac{p_i}{p_{i-1}} = \frac{P_f}{p_0}$

$$r_i \ge \sqrt{\frac{p_f}{p_0}} \le \sqrt{\frac{p_0}{p_f}}$$

$$p_f$$

Total progress is

 $\prod_{i \in [2c]} r_i =$

One player must have progress

- **1.** Estimate each p_i
- 2. Compute contribution of each player
- Let *N* be the **3**. Declare biaser to be player with contribution

and by Mark

 $\Pr[\Pi_{i \in N} r_i]$

$$= \prod_{i \in [2c]} \frac{p_i}{p_{i-1}} = \frac{p_f}{p_0}$$

$$\geq \sqrt{\frac{p_f}{p_0}}$$

$$\geq \sqrt{\frac{p_f}{p_0}} \leq \sqrt{\frac{p_0}{p_f}}$$

 [ACM22] has positive and between them

• [ACM22] has positive and negative results, but a large gap

- between them

[ACM22] has positive and negative results, but a large gap

Our work closes the gap by extending the negative results

- between them
- - non-trivial anonymity $\delta < 1$

[ACM22] has positive and negative results, but a large gap

 Our work closes the gap by extending the negative results Cannot get security against all poly adversaries with any

- between them
- - non-trivial anonymity $\delta < 1$
 - adversaries

[ACM22] has positive and negative results, but a large gap

Our work closes the gap by extending the negative results

Cannot get security against all poly adversaries with any

Cannot get negligible anonymity even against fine-grained

- between them
- - non-trivial anonymity $\delta < 1$
 - adversaries
 - Their positive result is the best we can get

[ACM22] has positive and negative results, but a large gap

Our work closes the gap by extending the negative results

Cannot get security against all poly adversaries with any

Cannot get negligible anonymity even against fine-grained

[ACM22] feasibility result relies on ideal obfuscation

- [ACM22] feasibility result relies on ideal obfuscation
 - Construct under standard assumption

es on ideal obfuscation assumption

- [ACM22] feasibility result relies on ideal obfuscation
 - Construct under standard assumption
- Covert Cheating Attack runs in fairly large polynomial time

- [ACM22] feasibility result relies on ideal obfuscation
 - Construct under standard assumption
- Covert Cheating Attack runs in fairly large polynomial time
 - Improve the runtime of the attack

