Lower Bounds for Anonymous Whistleblowing

Willy Quach, LaKyah Tyner, Daniel Wichs

Anonymous Transfer [Agricola, Couteau, Maier 22]

- Friends having public conversation over twitter or Facebook

Anonymous Transfer [Agricola, Couteau, Maier 22]

- Friends having public conversation over twitter or Facebook
- Everyone knows the know sent each message

Anonymous Transfer [Agricola, Couteau, Maier 22]

- One friend wants to transmit some secret message, unbeknownst to the others
- Without revealing identity

Anonymous Transfer [Agricola, Couteau, Maier 22]

Freddy

Anyone can recover secret message (even an outsider) without discovering the sender

Motivation

- Ideal for facilitating whistleblowing

Motivation

- Ideal for facilitating whistleblowing
- Whistleblowers act in an untrusted environment

Motivation

- Ideal for facilitating whistleblowing
- Whistleblowers act in an untrusted environment
- Face risk of punishment

Motivation

- Ideal for facilitating whistleblowing
- Whistleblowers act in an untrusted environment
- Face risk of punishment
- Can we mitigate risk using cryptographic techniques?

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLvO2, vHO4, vHLO5]

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results
- Positive result: a very weak form of AT is possible

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results
- Positive result: a very weak form of AT is possible
- Negative result: a very strong form of AT is impossible

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results
- Positive result: a very weak form of AT is possible
- Negative result: a very strong form of AT is impossible
- Leaves a big unknown gap between them

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results
- Positive result: a very weak form of AT is possible
- Negative result: a very strong form of AT is impossible
- Leaves a big unknown gap between them
- Our work closes the gap by extending the negative results

Prior Work

- Anonymous Transfer (AT) introduced by [ACM22].
- Main novelty: no reliance on any trusted parties beyond non-senders generating dummy traffic.
- Other prior work on anonymous communication (e.g., Tor) require trusted parties (e.g., Tor relay nodes) to actively participate.
- Technical: Model dummy messages as uniformly random strings. This is wlog since we can embed this in other distributions (e.g., conversation about bunnies). [HLv02, vHO4, vHLO5]
- [ACM22] has two results
- Positive result: a very weak form of AT is possible
- Negative result: a very strong form of AT is impossible
- Leaves a big unknown gap between them
- Our work closes the gap by extending the negative results
- Their very weak form of $A T$ is the best we can hope for

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]
- AT algorithms:

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
- Trusted Setup \rightarrow crs

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
- Trusted Setup \rightarrow crs
- Transfer $(\mu) \rightarrow \pi$

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
- Trusted Setup \rightarrow crs
- Transfer $(\mu) \rightarrow \pi$
- Reconstruct $(\pi) \rightarrow \mu^{\prime}$

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]
- AT algorithms:
- Trusted Setup \rightarrow crs

Correctness
For all secret messages $\mu \in\{0,1\}^{\ell}$
$\operatorname{Pr}\left[\mu^{\prime} \neq \mu\right]$ is negligible

- Reconstruct $(\pi) \rightarrow \mu^{\prime}$

Anonymous Transfer Specifics [ACM22]

- Focuses on c-round, 2 party AT (sender, non-sender)
- Lower bounds imply ones of N-party [ACM22]

AT algorithms:

- Trusted Setup \rightarrow crs
- Transfer $(\mu) \rightarrow \pi$
- Reconstruct(π)

Correctness
For all secret messages $\mu \in\{0,1\}^{\ell}$
$\operatorname{Pr}\left[\mu^{\prime} \neq \mu\right]$ is negligible
δ-anonymity "Distinguishing Advantage"
For all PPT D and all $\mu \in\{0,1\}^{\ell}$

$$
\left|\operatorname{Pr}\left[D\left(\pi^{A}\right)=1\right]-\operatorname{Pr}\left[D\left(\pi^{B}\right)=1\right]\right| \leq \delta
$$

Comparison: This work and [ACM22]

Comparison: This work and [ACM22]

[ACM22] Negative Result
Cannot get negligible anonymity δ against all poly-time adversaries

Comparison: This work and [ACM22]

[ACM22] Negative Result
Cannot get negligible anonymity δ against all poly-time adversaries
[ACM22] Positive Result
AT with anonymity $\delta=1 / c$ against fine-grained adversaries whose runtime is $\mathrm{O}(\mathrm{c}) \mathrm{x}$ honest parties. (strong assumptions)

Comparison: This work and [ACM22]

[ACM22] Negative Result
Cannot get negligible anonymity δ against all poly-time adversaries
[ACM22] Positive Result
AT with anonymity $\delta=1 / c$ against fine-grained adversaries whose runtime is $\mathrm{O}(\mathrm{c}) \mathrm{x}$ honest parties. (strong assumptions)

```
Big Gap: Can we get "decent" anonymity (say }\delta=.01) against all poly
adversaries? Can we get negligible anonymity against fine grained adversaries?
Our results: NO
```


Comparison: This work and [ACM22]

[ACM22] Negative Result
Cannot get negligible anonymity δ against all poly-time adversaries

[ACM22] Positive Result

AT with anonymity $\delta=1 / c$ against fine-grained adversaries whose runtime is $\mathrm{O}(\mathrm{c}) \mathrm{x}$ honest parties. (strong assumptions)

> Big Gap: Can we get "decent" anonymity (say $\delta=.01$) against all poly adversaries? Can we get negligible anonymity against fine grained adversaries?
> Our results: NO

Our Negative Result 1
Cannot get security against all poly adversaries with any non-trivial anonymity $\delta<1$

Comparison: This work and [ACM22]

[ACM22] Negative Result
Cannot get negligible anonymity δ against all poly-time adversaries

[ACM22] Positive Result

AT with anonymity $\delta=1 / c$ against fine-grained adversaries whose runtime is $\mathrm{O}(\mathrm{c}) \mathrm{x}$ honest parties. (strong assumptions)

> Big Gap: Can we get "decent" anonymity (say $\delta=.01$) against all poly adversaries? Can we get negligible anonymity against fine grained adversaries?
> Our results: NO

Our Negative Result 1
Cannot get security against all poly adversaries with any non-trivial anonymity $\delta<1$

Our Negative Result 2
Cannot get negligible anonymity even against fine-grained adversaries

Our Main Contribution

Attack on anonymity of AT

Our Main Contribution

Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender

Our Main Contribution

Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender
Consider the notion of "progress" towards correctly recovering message

Our Main Contribution

Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender
Consider the notion of "progress" towards correctly recovering message

- "progress" of partial transcript $\pi[i]$

Our Main Contribution

Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender
Consider the notion of "progress" towards correctly recovering message

- "progress" of partial transcript $\pi[i]$

$$
\pi=\left\{m_{1}, \ldots, m_{i}, m_{i+1}, \ldots, m_{|\pi|}\right\} \rightarrow \pi[i]=\left\{m_{1}, \ldots, m_{i}, r_{i+1}, \ldots, r_{|\pi|}\right\}
$$

Our Main Contribution

Attack on anonymity of AT

Goal: Given transcript π of the protocol, identify the sender
Consider the notion of "progress" towards correctly recovering message

- "progress" of partial transcript $\pi[i]$

$$
\pi=\left\{m_{1}, \ldots, m_{i}, m_{i+1}, \ldots, m_{|\pi|}\right\} \rightarrow \pi[i]=\left\{m_{1}, \ldots, m_{i}, r_{i+1}, \ldots, r_{|\pi|}\right\}
$$

- The party who makes the most progress is the sender

Our Main Contribution

Attack on anonymity of AT

$p_{i}:=$ probability of correctly recovering message after the i-th message associated with $\pi[i]$

Our Main Contribution

Attack on anonymity of AT

$p_{i}:=$ probability of correctly recovering message after the i-th message associated with $\pi[i]$

Our Main Contribution

Attack on anonymity of AT

$p_{i}:=$ probability of correctly recovering message after the i-th message associated with $\pi[i]$

©

Our Main Contribution

Attack on anonymity of AT

$p_{i}:=$ probability of correctly recovering message after the i-th message associated with $\pi[i]$

©

- Assign progress from $p_{i-1} \rightarrow p_{i}$ to A

Our Main Contribution

Attack on anonymity of AT

$p_{i}:=$ probability of correctly recovering message after the i-th message associated with $\pi[i]$

A

- Assign progress from $p_{i-1} \rightarrow p_{i}$ to A
- Main insight: Non-sender messages do not (on expectation) change p_{i}

Our Main Contribution

Attack on anonymity of AT

Our Main Contribution

Attack on anonymity of AT

Blueprint: Estimate each party's contribution

Our Main Contribution

Attack on anonymity of AT

Blueprint: Estimate each party's contribution
Argue:

Our Main Contribution

Attack on anonymity of AT

Blueprint: Estimate each party's contribution
Argue:

1. The contribution of the non-sender is small

Our Main Contribution

Attack on anonymity of AT

Blueprint: Estimate each party's contribution
Argue:

1. The contribution of the non-sender is small
2. Total contribution is large so, the party who contributed the most must be the sender

0

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \boldsymbol{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \mathfrak{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \mathfrak{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \hat{i}° and \hat{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \mathfrak{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \mathfrak{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \mathbb{R}° and \mathfrak{R}

Covert Cheating Game

- Abstract blueprint into the Cover Cheating Game
- Between two player \overbrace{i}° and $\overbrace{}^{\circ}$

Carl

Generic Attack with Large Advantage

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender
- Consider multiplicative progress

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender
- Consider multiplicative progress
- Progress from p_{i-1} to p_{i} is represented by

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender
- Consider multiplicative progress
- Progress from p_{i-1} to p_{i} is represented by

$$
r_{i}=\frac{p_{i}}{p_{i-1}}
$$

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender
- Consider multiplicative progress
- Progress from p_{i-1} to p_{i} is represented by

$$
r_{i}=\frac{p_{i}}{p_{i-1}}
$$

- Total progress is

Generic Attack with Large Advantage

- Uses the fact that non-biased player cannot change state much
- If p_{i-1} is close to zero then p_{i} can't be very different [by Markov]
- Task: Weigh progress made close to zero higher
- Larger progress made close to zero is made by the sender
- Consider multiplicative progress
- Progress from p_{i-1} to p_{i} is represented by

$$
r_{i}=\frac{p_{i}}{p_{i-1}}
$$

- Total progress is

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

Generic Attack with Large Advantage

Generic Attack with Large Advantage

- Total progress is

Generic Attack with Large Advantage

- Total progress is

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

Generic Attack with Large Advantage

- Total progress is
- One player must have progress

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

Generic Attack with Large Advantage

- Total progress is
- One player must have progress

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

$$
\geq \sqrt{\frac{p_{f}}{p_{0}}}
$$

Generic Attack with Large Advantage

- Total progress is
- One player must have progress

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

$$
\geq \sqrt{\frac{p_{f}}{p_{0}}}
$$

- Let N be the set of indices for non-biased player, then

Generic Attack with Large Advantage

- Total progress is
- One player must have progress

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

$$
\geq \sqrt{\frac{p_{f}}{p_{0}}}
$$

- Let N be the set of indices for non-biased player, then

$$
E\left[\Pi_{i \in N} r_{i}\right]=1
$$

Generic Attack with Large Advantage

- Total progress is
- One player must have progress

$$
\Pi_{i} r_{i}=\Pi_{i} \frac{p_{i}}{p_{i-1}}=\frac{p_{f}}{p_{0}}
$$

$$
\geq \sqrt{\frac{p_{f}}{p_{0}}}
$$

- Let N be the set of indices for non-biased player, then

$$
E\left[\Pi_{i \in N} r_{i}\right]=1
$$

and by Markov the probability that $\Pi_{i \in N} r_{i} \geq \sqrt{\frac{p_{f}}{p_{0}}}$ is less than or equal to $\sqrt{\frac{p_{0}}{p_{f}}}$

Generic Attack with Large Advantage

- Total progress is

- One player must have progress

- Let N be the set of indices for non-biased player, then
$E\left[\Pi_{i \in N} r_{i}\right]=1$
and by Markov

Generic Attack with Large Advantage

Summary

Summary

- [ACM22] has positive and negative results, but a large gap between them

Summary

- [ACM22] has positive and negative results, but a large gap between them
- Our work closes the gap by extending the negative results

Summary

- [ACM22] has positive and negative results, but a large gap between them
- Our work closes the gap by extending the negative results
- Cannot get security against all poly adversaries with any non-trivial anonymity $\delta<1$

Summary

- [ACM22] has positive and negative results, but a large gap between them
- Our work closes the gap by extending the negative results
- Cannot get security against all poly adversaries with any non-trivial anonymity $\delta<1$
- Cannot get negligible anonymity even against fine-grained adversaries

Summary

- [ACM22] has positive and negative results, but a large gap between them
- Our work closes the gap by extending the negative results
- Cannot get security against all poly adversaries with any non-trivial anonymity $\delta<1$
- Cannot get negligible anonymity even against fine-grained adversaries
- Their positive result is the best we can get

Open Questions

Open Questions

- [ACM22] feasibility result relies on ideal obfuscation

Open Questions

- [ACM22] feasibility result relies on ideal obfuscation
- Construct under standard assumption

Open Questions

- [ACM22] feasibility result relies on ideal obfuscation
- Construct under standard assumption
- Covert Cheating Attack runs in fairly large polynomial time

Open Questions

- [ACM22] feasibility result relies on ideal obfuscation
- Construct under standard assumption
- Covert Cheating Attack runs in fairly large polynomial time
- Improve the runtime of the attack

Thanks!

