Randomized Functions with High Round Complexity

Hai H. Nguyen

PURDUE ETHzürich

Joint work with

Saugata Basu

Hemanta K. Maji
Purdue

Hamidreza A. Khorasgani

Problem: Round Complexity of Secure Computation

Input: A function $f: X \times Y \rightarrow \mathbb{R}^{Z}$
Model: 2-party SFE in Information-theoretic Plain Model

Adversary: Honest-but-curious
Question: What is the round complexity of securely computing f ?

Previous State-of-the-art

Question: What is the round complexity of $f: X \times Y \rightarrow \mathbb{R}^{Z}$?

Class of Functions	with Security	Upper Bound on rc (f)
Any function	No	
		2

Previous State-of-the-art

Question: What is the round complexity of $f: X \times Y \rightarrow \mathbb{R}^{Z}$?

Class of Functions	with Security	Upper Bound on $\operatorname{rc}(f)$
Any function	No	2
Any deterministic decomposable function [Chor-Kushilevitz-Beaver-89]	Yes	$\min (\|Z\|, 2 \cdot\|X\|, 2 \cdot\|Y\|)-1$

Previous State-of-the-art

Question: What is the round complexity of $f: X \times Y \rightarrow \mathbb{R}^{Z}$?

Class of Functions	with Security	Upper Bound on rc (f)
Any function	No	2
Any deterministic decomposable function [Chor-Kushilevitz-Beaver-89]	Yes	$\min (\|Z\|, 2 \cdot\|X\|, 2 \cdot\|Y\|)-1$
A class of functions with $\|Z\| \leqslant 3$ [Data-Prabhakaran-18]	Yes	2

Previous State-of-the-art

Question: What is the round complexity of $f: X \times Y \rightarrow \mathbb{R}^{Z}$?

Class of Functions	with Security	Upper Bound on rc (f)
Any function	No	2
Any deterministic decomposable function [Chor-Kushilevitz-Beaver-89]	Yes	$\min (\|Z\|, 2 \cdot\|X\|, 2 \cdot\|Y\|)-1$
A class of functions with $\|Z\| \leqslant 3$ [Data-Prabhakaran-18]	Yes	2

Observation

The round complexity $\mathrm{rc}(f)$ in all these previous results
(1) depends solely on the cardinality of its domain and range.
(2) is independent of the probability distributions $f(x, y)$.

A Natural Conjecture:

$$
\operatorname{rc}(f)=\text { function }(|X|,|Y|,|Z|)
$$

Our Contribution

Refute the Natural Conjecture:

$$
\mathrm{rc}(f)=\text { function }(|X|,|Y|,|Z|)
$$

Our Contribution

Refute the Natural Conjecture:

$$
\operatorname{rc}(f)=\text { function }(|X|,|Y|,|Z|)
$$

Theorem

(1) For any $r \in \mathbb{N}$, we construct a function $f_{r}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\mathrm{rc}(f)=r$.

- $\mathrm{rc}(f)$ must involve the probabilities describing the function f.
(2) Our construction is optimal.
- $\operatorname{rc}(f) \leqslant 4$ for every function $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$ satisfying $|Z| \leqslant 4$.

Fascinating Connection Between Secure Computation \& Hydrodynamics

Note

We learned about it at an Algebraic Geometry Workshop organized by [Basu-Kummer-Netzer-Vinzant-23].
Lamination Hull
Given a set of points $\Lambda \subseteq \mathbb{R}^{d}$, and a set of initial point $S^{(0, \Lambda)} \subseteq \mathbb{R}^{d}$, recursively define:

The lamination hull is the limit of the sequence $S^{(0, \Lambda)} \rightarrow S^{(1, \Lambda)} \rightarrow S^{(2, \Lambda)} \rightarrow \cdots$.
Our problem: $\Lambda=(0, \mathbb{R}, \ldots, \mathbb{R}) \cup(\mathbb{R}, 0, \mathbb{R}, \ldots, \mathbb{R}) \subseteq \mathbb{R}^{d}$
Tied to computing the stationary solutions to the following differential equations: do secure protocols manifest in physical processes in nature?

Incompressible Porous Media (IPM) Equations

Conservation of Mass, Incompressibility, Darcy's Law (ρ : fluid density, v: velocity, g : gravity.)

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{v})=0, \quad \nabla \cdot \mathbf{v}=0, \quad \frac{\mu}{\kappa} \vec{v}=-\nabla p-\rho g .
$$

Recap of Basu-Khorasgani-Maji-Nguyen (FOCS 2022)

Reduction: Round Complexity to a Geometric Problem
Consider a (possibly randomized) functionality $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$.
(1) Geometric Encoding: (Alice Marginal, Bob Marginal, Function Encoding) $\in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{|Z|}$
(2) Rules for Bonding: Convexly combine $\left(X_{1}, Y_{1}, F\right)$ and $\left(X_{2}, Y_{2}, F^{\prime}\right)$ if and only if $X_{1}=X_{2}$ or $Y_{1}=Y_{2}$

Recap of Basu-Khorasgani-Maji-Nguyen (FOCS 2022)

Reduction: Round Complexity to a Geometric Problem
Consider a (possibly randomized) functionality $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$.
(1) Geometric Encoding: (Alice Marginal, Bob Marginal, Function Encoding) $\in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{|Z|}$
(2) Rules for Bonding: Convexly combine $\left(X_{1}, Y_{1}, F\right)$ and $\left(X_{2}, Y_{2}, F^{\prime}\right)$ if and only if $X_{1}=X_{2}$ or $Y_{1}=Y_{2}$
(3) Base Case: $S^{(0)}=$ Set of all Encoded "unsplit" Monochromatic Rectangles, $\left|S^{(0)}\right|=|Z|$
(4) Recursion (Geometric Action): $S^{(i+1)}$ is the set of all convex combination of points in $S^{(i)}$ that satisfy the "Rules of Bonding"
(6) Target: $Q(f)=(1 / 2,1 / 2$, Encoding of $f)$

Recap of Basu-Khorasgani-Maji-Nguyen (FOCS 2022)

Reduction: Round Complexity to a Geometric Problem

Consider a (possibly randomized) functionality $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$.
(1) Geometric Encoding: (Alice Marginal, Bob Marginal, Function Encoding) $\in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{|Z|}$
(2) Rules for Bonding: Convexly combine $\left(X_{1}, Y_{1}, F\right)$ and $\left(X_{2}, Y_{2}, F^{\prime}\right)$ if and only if $X_{1}=X_{2}$ or $Y_{1}=Y_{2}$
(3)Base Case: $S^{(0)}=$ Set of all Encoded "unsplit" Monochromatic Rectangles, $\left|S^{(0)}\right|=|Z|$
(4) Recursion (Geometric Action): $S^{(i+1)}$ is the set of all convex combination of points in $S^{(i)}$ that satisfy the "Rules of Bonding"
(6) Target: $Q(f)=(1 / 2,1 / 2$, Encoding of $f)$
(0) Round Complexity: $\mathrm{rc}(f) \leqslant r$ if and only if $Q(f) \in S^{(r)}$

- Protocol Construction: If $Q(f) \in S^{(r)}$, then the parse tree of "how base cases generate $Q(f)$ " translates into a secure protocol
- Obstruction Detection: If $Q(f) \notin S^{(r)}$, then there is no secure protocol

Recap of Basu-Khorasgani-Maji-Nguyen (FOCS 2022)

Reduction: Round Complexity to a Geometric Problem

Consider a (possibly randomized) functionality $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$.
(1) Geometric Encoding: (Alice Marginal, Bob Marginal, Function Encoding) $\in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{|Z|}$
(2) Rules for Bonding: Convexly combine $\left(X_{1}, Y_{1}, F\right)$ and $\left(X_{2}, Y_{2}, F^{\prime}\right)$ if and only if $X_{1}=X_{2}$ or $Y_{1}=Y_{2}$
(3) Base Case: $S^{(0)}=$ Set of all Encoded "unsplit" Monochromatic Rectangles, $\left|S^{(0)}\right|=|Z|$
(4) Recursion (Geometric Action): $S^{(i+1)}$ is the set of all convex combination of points in $S^{(i)}$ that satisfy the "Rules of Bonding"
(6) Target: $Q(f)=(1 / 2,1 / 2$, Encoding of $f)$

Round Complexity: $\mathrm{rc}(f) \leqslant r$ if and only if $Q(f) \in S^{(r)}$

- Protocol Construction: If $Q(f) \in S^{(r)}$, then the parse tree of "how base cases generate $Q(f)$ " translates into a secure protocol
- Obstruction Detection: If $Q(f) \notin S^{(r)}$, then there is no secure protocol

Corollary

$$
\operatorname{rc}(f)=r \text { if and only if } Q(f) \in S^{(r)} \backslash S^{(r-1)}
$$

Overview of Our Construction

High-Level Idea
Objective: For every r, construct a function $f_{r}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\mathrm{rc}\left(f_{r}\right)=r$.
BKMN's Reduction: Construct f_{r} such that $Q\left(f_{r}\right) \in S^{(r)}$ and $Q\left(f_{r}\right) \notin S^{(r-1)}$

Overview of Our Construction

High-Level Idea

Objective: For every r, construct a function $f_{r}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\mathrm{rc}\left(f_{r}\right)=r$.
BKMN's Reduction: Construct f_{r} such that $Q\left(f_{r}\right) \in S^{(r)}$ and $Q\left(f_{r}\right) \notin S^{(r-1)}$
Our Main Idea: Construct a set $S^{(0)}$ of constant size in an ambient space of constant dimension such that

$$
S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots
$$

- Otherwise, if $S^{(t)}=S^{(t+1)}$, for some $t \in\{0,1,2, \ldots\}$, then $\mathrm{rc}(f) \leqslant t$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Our Illustrative Example: Tartar Square

Objective: Construct $S^{(0)} \subsetneq S^{(1)} \subsetneq S^{(2)} \subsetneq \cdots$

Notes
(1) Constructed a sequence of points $P^{(1)}, P^{(2)}, P^{(3)}, P^{(4)}, \ldots \in \mathbb{R}^{3}$ such that

- the third coordinate of $P^{(i)}$ is $1 / 2^{i}$ that tends to but never reaches 0 , - $P^{(i)} \in S^{(i)} \backslash S^{(i-1)}$ for every i.

Similar to the famous Tartar square in Mathematics.

Functions with High Round Complexity

$$
\begin{aligned}
& x=1 \\
& x=0 \\
& y=0 \quad y=1
\end{aligned}
$$

Construction of $f_{4 k+1}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\operatorname{rc}\left(f_{4 k+1}\right)=4 k+1$, where $\sigma_{k}=\frac{1-(1 / 16)^{k}}{1-1 / 16}$.

Geometric Encoding

Initial Set: Let e_{i} be the i-th standard basis of \mathbb{R}^{5}

$$
S^{(0)}=\left\{\left(\frac{3}{4}, \frac{1}{4}, e_{1}\right),\left(\frac{1}{4}, \frac{2}{4}, e_{2}\right),\left(\frac{2}{4}, \frac{4}{4}, e_{3}\right),\left(\frac{4}{4}, \frac{3}{4}, e_{4}\right),\left(\frac{3}{4}, \frac{2}{4}, e_{5}\right)\right\} \subseteq \mathbb{R}^{7}
$$

Query Point:

$$
Q\left(f_{4 k+1}\right)=\left(1 / 2,1 / 2, \frac{\sigma_{k}}{4}, \frac{\sigma_{k+1}}{2}, \frac{\sigma_{k}}{16}, \frac{\sigma_{k}}{8}, \frac{1}{2^{4 k+1}}\right) \in S^{(4 k+1)} \backslash S^{(4 k)}
$$

Conclusion

Theorem

(1) For any $r \in \mathbb{N}$, there is a function $f_{r}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\mathrm{rc}(f)=r$.
(2) $\mathrm{rc}(f) \leqslant 4$ for every function $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$ satisfying $|Z| \leqslant 4$.

Question

Does a 2-party function, possibly with randomized output, have a secure protocol?

Conclusion

Theorem

(1) For any $r \in \mathbb{N}$, there is a function $f_{r}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{5}$ such that $\mathrm{rc}(f)=r$.
(2) $\mathrm{rc}(f) \leqslant 4$ for every function $f:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}^{Z}$ satisfying $|Z| \leqslant 4$.

Question

Does a 2-party function, possibly with randomized output, have a secure protocol?

On-going Work

The above question is decidable (Technical machinery: Tropical Geometry)

Thank you!

