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Problem: Round Complexity of Secure Computation

Input: A function f : X × Y → RZ

Model: 2-party SFE in Information-theoretic Plain Model

x ∈ X

z ← f(x, y)

y ∈ Y

z ← f(x, y)

Interaction

Adversary: Honest-but-curious
Question: What is the round complexity of securely computing f?
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Previous State-of-the-art

Question: What is the round complexity of f : X × Y → RZ?

Class of Functions with Security Upper Bound on rc(f)

Any function No 2

Any deterministic decomposable function
[Chor-Kushilevitz-Beaver-89]

Yes min(|Z|, 2 · |X|, 2 · |Y |)− 1

A class of functions with |Z| ⩽ 3
[Data-Prabhakaran-18]

Yes 2

Observation

The round complexity rc(f) in all these previous results

1 depends solely on the cardinality of its domain and range.

2 is independent of the probability distributions f(x, y).

A Natural Conjecture:

rc(f) = function( |X|, |Y |, |Z| )
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Our Contribution

Refute the Natural Conjecture:

rc(f) = function(|X|, |Y |, |Z|)

Theorem

1 For any r ∈ N, we construct a function fr : {0, 1} × {0, 1} → R5 such that rc(f) = r.
rc(f) must involve the probabilities describing the function f .

2 Our construction is optimal.

rc(f) ⩽ 4 for every function f : {0, 1} × {0, 1} → RZ satisfying |Z| ⩽ 4.
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Fascinating Connection Between Secure Computation & Hydrodynamics

Note

We learned about it at an Algebraic Geometry Workshop organized by [Basu-Kummer-Netzer-Vinzant-23].

Lamination Hull

Given a set of points Λ ⊆ Rd, and a set of initial point S(0,Λ) ⊆ Rd, recursively define:

S(i+1,Λ) :=

λ ·Q(1) + (1− λ) ·Q(2) :
Q(1), Q(2) ∈ S(i,Λ),

λ ∈ [0, 1], and

Q(1) −Q(2) ∈ Λ

 .

The lamination hull is the limit of the sequence S(0,Λ) → S(1,Λ) → S(2,Λ) →· · ·.
Our problem: Λ = (0,R, . . . ,R) ∪ (R, 0,R, . . . ,R) ⊆ Rd

Tied to computing the stationary solutions to the following differential equations: do secure protocols manifest
in physical processes in nature?

Incompressible Porous Media (IPM) Equations

Conservation of Mass, Incompressibility, Darcy’s Law (ρ: fluid density, v: velocity, g: gravity.)

∂tρ+∇ · (ρv) = 0, ∇ · v = 0,
µ

κ
v⃗ = −∇p− ρg.
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Recap of Basu-Khorasgani-Maji-Nguyen (FOCS 2022)

Reduction: Round Complexity to a Geometric Problem

Consider a (possibly randomized) functionality f : {0, 1} × {0, 1} → RZ .

1 Geometric Encoding: (Alice Marginal,Bob Marginal,Function Encoding) ∈ R× R× R|Z|

2 Rules for Bonding: Convexly combine (X1, Y1, F ) and (X2, Y2, F ′) if and only if X1 = X2 or Y1 = Y2

3 Base Case: S(0) = Set of all Encoded “unsplit” Monochromatic Rectangles,
∣∣S(0)

∣∣ = |Z|

4 Recursion (Geometric Action): S(i+1) is the set of all convex combination of points in S(i) that satisfy
the “Rules of Bonding”

5 Target: Q(f) = (1/2, 1/2,Encoding of f)

6 Round Complexity: rc(f) ⩽ r if and only if Q(f) ∈ S(r)

Protocol Construction: If Q(f) ∈ S(r), then the parse tree of “how base cases generate Q(f)” translates into a
secure protocol

Obstruction Detection: If Q(f) ̸∈ S(r), then there is no secure protocol

Corollary

rc(f) = r if and only if Q(f) ∈ S(r) \ S(r−1)
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Overview of Our Construction

High-Level Idea

Objective: For every r, construct a function fr : {0, 1} × {0, 1} → R5 such that rc(fr) = r.

BKMN’s Reduction: Construct fr such that Q(fr) ∈ S(r) and Q(fr) /∈ S(r−1)

Our Main Idea: Construct a set S(0) of constant size in an ambient space of constant
dimension such that

S(0) ⊊ S(1) ⊊ S(2) ⊊ · · ·

Otherwise, if S(t) = S(t+1), for some t ∈ {0, 1, 2, . . . }, then rc(f) ⩽ t
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Our Illustrative Example: Tartar Square

Objective: Construct S(0) ⊊ S(1) ⊊ S(2) ⊊ · · ·

A

B

C

D

E

X

Y

R3 ⊇ S(0) = {A = (3, 1, 0), B = (1, 2, 0), C = (2, 4, 0), D = (4, 3, 0), E = (3, 2, 1)}

S(1)S(2)S(3)S(4)S(5)
Notes

1 Constructed a sequence of points P (1), P (2), P (3), P (4), . . . ∈ R3 such that

the third coordinate of P (i) is 1/2i that tends to but never reaches 0,
P (i) ∈ S(i) \ S(i−1) for every i.

2 Similar to the famous Tartar square in Mathematics.
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Functions with High Round Complexity

y = 0 y = 1

Construction of f4k+1 : {0, 1} × {0, 1} → R5 such that rc(f4k+1) = 4k + 1, where σk =
1−(1/16)k

1−1/16
.

x = 0

x = 1

3
16

σk
1
4
σk+1

1
8
σk

3
8
σk

9
16

σk
1
4
σk+1

1
8
σk

1
16

σk
3
4
σk+1

1
8
σk

3
16

σk
3
4
σk+1

0

0 0 0

3
24k+2

3
24k+2

1
24k+2

1
24k+2

Geometric Encoding

Initial Set: Let ei be the i-th standard basis of R5

S(0) =

{(
3

4
,
1

4
, e1

)
,

(
1

4
,
2

4
, e2

)
,

(
2

4
,
4

4
, e3

)
,

(
4

4
,
3

4
, e4

)
,

(
3

4
,
2

4
, e5

)}
⊆ R7

Query Point:

Q(f4k+1) =

(
1/2, 1/2,

σk

4
,
σk+1

2
,
σk

16
,
σk

8
,

1

24k+1

)
∈ S(4k+1) \ S(4k)
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Conclusion

Theorem

1 For any r ∈ N, there is a function fr : {0, 1} × {0, 1} → R5 such that rc(f) = r.

2 rc(f) ⩽ 4 for every function f : {0, 1} × {0, 1} → RZ satisfying |Z| ⩽ 4.

Question

Does a 2-party function, possibly with randomized output, have a secure protocol?

On-going Work

The above question is decidable (Technical machinery: Tropical Geometry)

Thank you!
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