
Revisiting Updatable Encryption: Controlled Forward

Security, Constructions and a Puncturable Perspective

Daniel Slamanig (UniBw)* & Christoph Striecks (AIT)

Presentation given by Roman Langrehr (ETH Zurich)

TCC, November 30, 2023

*Work done while author was with AIT Austrian Institute of Technology





Forward Security to Mitigate Key Leakage

• Key leakage: severe issue for encryption schemes – all data immediately in danger

• Mitigation: forward security guarantees that old data is still safe

• Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, . . .

• Broadly considered in several cryptographic applications: e.g., key exchange [Gün90,

DDG+20, BRS23, RSS23], (updatable) public-key encryption [CHK03, Gro21, DKW21],

signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],

proxy cryptography [DKLRSS17], Tor [LGM+17], content delivery networks [DRSS21]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not

known to be achievable at all before.

3



Forward Security to Mitigate Key Leakage

• Key leakage: severe issue for encryption schemes – all data immediately in danger

• Mitigation: forward security guarantees that old data is still safe

• Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, . . .

• Broadly considered in several cryptographic applications: e.g., key exchange [Gün90,

DDG+20, BRS23, RSS23], (updatable) public-key encryption [CHK03, Gro21, DKW21],

signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],

proxy cryptography [DKLRSS17], Tor [LGM+17], content delivery networks [DRSS21]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not

known to be achievable at all before.

3



Forward Security to Mitigate Key Leakage

• Key leakage: severe issue for encryption schemes – all data immediately in danger

• Mitigation: forward security guarantees that old data is still safe

• Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, . . .

• Broadly considered in several cryptographic applications: e.g., key exchange [Gün90,

DDG+20, BRS23, RSS23], (updatable) public-key encryption [CHK03, Gro21, DKW21],

signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],

proxy cryptography [DKLRSS17], Tor [LGM+17], content delivery networks [DRSS21]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not

known to be achievable at all before.

3



Forward Security to Mitigate Key Leakage

• Key leakage: severe issue for encryption schemes – all data immediately in danger

• Mitigation: forward security guarantees that old data is still safe

• Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, . . .

• Broadly considered in several cryptographic applications: e.g., key exchange [Gün90,

DDG+20, BRS23, RSS23], (updatable) public-key encryption [CHK03, Gro21, DKW21],

signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],

proxy cryptography [DKLRSS17], Tor [LGM+17], content delivery networks [DRSS21]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not

known to be achievable at all before.

3



Forward Security to Mitigate Key Leakage

• Key leakage: severe issue for encryption schemes – all data immediately in danger

• Mitigation: forward security guarantees that old data is still safe

• Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, . . .

• Broadly considered in several cryptographic applications: e.g., key exchange [Gün90,

DDG+20, BRS23, RSS23], (updatable) public-key encryption [CHK03, Gro21, DKW21],

signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],

proxy cryptography [DKLRSS17], Tor [LGM+17], content delivery networks [DRSS21]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not

known to be achievable at all before.

3



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Updatable Encryption

• Updatable encryption is a symmetric primitive that allows to rotate encryption keys in

(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload

already encrypted data

• Key generation: K1 ← Gen

• Encryption: C1 ← Enc(K1,M)

• Next key: (K2,∆2)← NextKey(K1)

• Update: C2 ← Update(C1,∆2) with property M = Dec(K2,C2)

• Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak

4



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Starting Building Block: Symmetric Puncturable Encryption (SPE)

• Tag-based encryption scheme with fine-grained forward security (PE as a general

paradigm considered already in, e.g., [GM15,GHJL18,DGJSS21,AGJ21,. . . ])

• Key generation: Kε ← KeyGen

• Encryption: C{t1} ← Enc(Kε, t1,M)

• Puncturing: K{t1} ← Punc(Kε, t1)

• Properties: K{t1} no longer useful to decrypt ciphertexts associated to t1 (such as C{t1}),

but still all others with t2, . . .

• Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,

exclude more ciphertexts from being decryptable)

• Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available

5



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Special Case of SPE: Epoch-Based Puncturable Encryption

• Stepping back: SPE with linearly evolving epochs e1, e2, . . . encoded in keys

• Key generation: Ke1 ← KeyGen

• Encryption: returns Ce1 ← Enc(Ke1 ,M)

• Puncturing: returns Ke2 ← Punc(Ke1)

• Properties: Ke2 no longer useful to decrypt ciphertexts associated to Ke1

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?

6



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

• Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the

concept of tags in PE) and add expiry epochs

• Key generation: Ke1 ← KeyGen

• Encryption: Ce1,t1,exp ← Enc(Ke1 ,M, t1, exp)

• Key puncturing: (Ke2 ,∆e2,t1 , . . .)← KPunc(Ke1 , t1, . . .)

• Exclude from puncturing: Ce2,t1,exp ← ExPunc(Ce1,t1,exp,∆e2,t1)

• Properties: M = Dec(Ke2 ,Ce2,t1,exp) if exp ≥ 2

• Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are

available (except for trivial wins)

7



Application: Updatable Encryption with Expiring Ciphertexts

• TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined

in our work)

• Security: our defined UE notion implies CPA notions of common UE schemes

• Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard

assumptions (solves open problem posed in [GP23, MPW23])

• Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]

8



Application: Updatable Encryption with Expiring Ciphertexts

• TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined

in our work)

• Security: our defined UE notion implies CPA notions of common UE schemes

• Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard

assumptions (solves open problem posed in [GP23, MPW23])

• Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]

8



Application: Updatable Encryption with Expiring Ciphertexts

• TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined

in our work)

• Security: our defined UE notion implies CPA notions of common UE schemes

• Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard

assumptions (solves open problem posed in [GP23, MPW23])

• Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]

8



Application: Updatable Encryption with Expiring Ciphertexts

• TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined

in our work)

• Security: our defined UE notion implies CPA notions of common UE schemes

• Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard

assumptions (solves open problem posed in [GP23, MPW23])

• Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]

8



Takeaways

• Forward security is an essential security feature of many cryptographic primitives

• Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas

such as updatable encryption

• Open: use TIPE for applications beyond UE?

9



Takeaways

• Forward security is an essential security feature of many cryptographic primitives

• Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas

such as updatable encryption

• Open: use TIPE for applications beyond UE?

9



Takeaways

• Forward security is an essential security feature of many cryptographic primitives

• Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas

such as updatable encryption

• Open: use TIPE for applications beyond UE?

9



Thank you!


