Revisiting Updatable Encryption: Controlled Forward
Security, Constructions and a Puncturable Perspective

Daniel Slamanig (UniBw)* & Christoph Striecks (AIT)
Presentation given by Roman Langrehr (ETH Zurich)

TCC, November 30, 2023

*Work done while author was with AIT Austrian Institute of Technology



naked security - SOPHOS — e @[
— GIZMODO = wee

Adobe security team posts public key
— together with private key

—_— s

Amazon Engineer Leaked Private Encryption Keys.
Outside Analysts Discovered Them in Minutes

Get the latest security news in your inbox.
r—

LWiLL not make wy PRIVATE key PUBLIC.
LWill not make my PRIVATE key PUBLIC.
WLl not make my PRIVATE key PUBLIC,
LWLl not make wy PRIVATE key PUBLIC.

Feaured vieos

L Will not make my PRIVATE key PUBLIC.
LWLl not make my PRIVATE key PUBLIC,
WLl not make wy PRIVATE key PUBLIC.
L WilL not make my PRIVATE key PUBLIC.
L Will not make wy PRIVATE key PUBLIC.
LWLl not make wy PRIVATE key PUBLIC.

GIZIDDO

SudoDspay

10 e s
e Service (AWS) g st weck ity made pli
it e ther own perscnal

S —————————— Gl e S

ot s o specal what s notemorhy bl
e by i party,who—10
e

on Linkedn, commivel el s

o presdent o prodcta UpGusel,



Forward Security to Mitigate Key Leakage

o Key leakage: severe issue for encryption schemes — all data immediately in danger



Forward Security to Mitigate Key Leakage

o Key leakage: severe issue for encryption schemes — all data immediately in danger

e Mitigation: forward security guarantees that old data is still safe



Forward Security to Mitigate Key Leakage

o Key leakage: severe issue for encryption schemes — all data immediately in danger
e Mitigation: forward security guarantees that old data is still safe

e Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, ...



Forward Security to Mitigate Key Leakage

o Key leakage: severe issue for encryption schemes — all data immediately in danger
e Mitigation: forward security guarantees that old data is still safe
e Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, ...

e Broadly considered in several cryptographic applications: e.g., key exchange [Giin90,
DDG+20, BR523, R5523], (updatable) public-key encryption [CHK03, Gro21, DKW21],
signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],
proxy cryptography [DKLRS517], Tor [LGM+17], content delivery networks [DR5521]



o Key leakage: severe issue for encryption schemes — all data immediately in danger
e Mitigation: forward security guarantees that old data is still safe
e Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, ...

e Broadly considered in several cryptographic applications: e.g., key exchange [Giin90,
DDG+20, BR523, R5523], (updatable) public-key encryption [CHK03, Gro21, DKW21],
signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],
proxy cryptography [DKLRS517], Tor [LGM+17], content delivery networks [DR5521]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not
known to be achievable at all before.



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: Kj + Gen



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: Kj + Gen

e Encryption: C; + Enc(Ky, M)



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: K; < Gen
e Encryption: C; + Enc(Ky, M)
o Next key: (Kz,Ay) < NextKey(K1)



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: K; < Gen

e Encryption: C; + Enc(Ky, M)

o Next key: (Kz,Ay) < NextKey(K1)

e Update: G, + Update(Gy, Az) with property M = Dec(Ka, G)



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: K; < Gen

e Encryption: C; + Enc(Ky, M)

o Next key: (Kz,Ay) < NextKey(K1)

e Update: G, + Update(Gy, Az) with property M = Dec(Ka, G)

e Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens



Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: K; < Gen

e Encryption: C; + Enc(Ky, M)

o Next key: (Kz,Ay) < NextKey(K1)

e Update: G, + Update(Gy, Az) with property M = Dec(Ka, G)

e Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])
e Key generation: K. < KeyGen

e Encryption: Cyyy < Enc(K, t1, M)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen

Encryption: Cyy,y < Enc(K, t1, M)

Puncturing: Ky, < Punc(K., t1)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...

e Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,
exclude more ciphertexts from being decryptable)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...

e Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,
exclude more ciphertexts from being decryptable)

e Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available



Special Case of SPE: Epoch-Based Puncturable Encryption

e Stepping back: SPE with linearly evolving epochs e, e, ... encoded in keys



Special Case of SPE: Epoch-Based Puncturable Encryption

e Stepping back: SPE with linearly evolving epochs e, e, ... encoded in keys

e Key generation: K, < KeyGen



Special Case of SPE: Epoch-Based Puncturable Encryption

e Stepping back: SPE with linearly evolving epochs e, e, ... encoded in keys
e Key generation: K, < KeyGen

e Encryption: returns Ce, < Enc(Ke,, M)



Special Case of SPE: Epoch-Based Puncturable Encryption

Stepping back: SPE with linearly evolving epochs ey, e, ... encoded in keys

e Key generation: K, < KeyGen

Encryption: returns Ce, < Enc(Ke,, M)

e Puncturing: returns K., < Punc(KL,)



Special Case of SPE: Epoch-Based Puncturable Encryption

Stepping back: SPE with linearly evolving epochs ey, e, ... encoded in keys
e Key generation: K, < KeyGen

Encryption: returns Ce, < Enc(Ke,, M)

Puncturing: returns K, < Punc(KL,)

Properties: K., no longer useful to decrypt ciphertexts associated to K,



Special Case of SPE: Epoch-Based Puncturable Encryption

Stepping back: SPE with linearly evolving epochs ey, e, ... encoded in keys
e Key generation: K, < KeyGen

Encryption: returns Ce, < Enc(Ke,, M)

Puncturing: returns K, < Punc(KL,)

Properties: K., no longer useful to decrypt ciphertexts associated to K,

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)

Key puncturing: (Ke,, D 1y, ---) ¢ KPunc(Ke,, t1,...)



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)
o Key puncturing: (Ke,, Aey tys---) < KPunc(Ke,, t1, . . .)

o Exclude from puncturing: Ce, ¢ exp < EXPunc(Ce, ;. exp, Doy tr)




Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)
o Key puncturing: (Ke,, Aey tys---) < KPunc(Ke,, t1, . . .)

o Exclude from puncturing: Ce, ¢ exp < EXPunc(Ce, ;. exp, Doy tr)

e Properties: M = Dec(Ke,, Ce, t,,exp) if exp > 2



Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)
e Key puncturing: (Ke,; Ae, ¢y, - - ) <= KPunc(Ke;, 1, . . )

o Exclude from puncturing: Ce, ¢ exp < EXPunc(Ce, ;. exp, Doy tr)

e Properties: M = Dec(Ke,, Ce, t,,exp) if exp > 2

e Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are
available (except for trivial wins)



Application: Updatable Encryption with Expiring Ciphertexts

e TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined
in our work)



Application: Updatable Encryption with Expiring Ciphertexts

e TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined
in our work)

e Security: our defined UE notion implies CPA notions of common UE schemes



Application: Updatable Encryption with Expiring Ciphertexts

e TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined
in our work)

e Security: our defined UE notion implies CPA notions of common UE schemes

e Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard
assumptions (solves open problem posed in [GP23, MPW23])



Application: Updatable Encryption with Expiring Ciphertexts

e TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined
in our work)

e Security: our defined UE notion implies CPA notions of common UE schemes

e Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard
assumptions (solves open problem posed in [GP23, MPW23])

e Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]



e Forward security is an essential security feature of many cryptographic primitives



e Forward security is an essential security feature of many cryptographic primitives

e Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas
such as updatable encryption



e Forward security is an essential security feature of many cryptographic primitives
e Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas
such as updatable encryption

e Open: use TIPE for applications beyond UE?



TeamaWare

Thank you!

FLIF

Der Wissenschaftsfonds.

@ ne

tidee

FORDERUNGEN



