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o Key leakage: severe issue for encryption schemes — all data immediately in danger
e Mitigation: forward security guarantees that old data is still safe
e Mandatory in TLS 1.3, recognized by industry: Apple, Cloudflare, Google, Microsoft, ...

e Broadly considered in several cryptographic applications: e.g., key exchange [Giin90,
DDG+20, BR523, R5523], (updatable) public-key encryption [CHK03, Gro21, DKW21],
signatures [BM91, DGNW20], searchable encryption [BMO17], Cloud backup [DCM20],
proxy cryptography [DKLRS517], Tor [LGM+17], content delivery networks [DR5521]

Goal in this work: enhancing forward-security paradigm to updatable encryption. Not
known to be achievable at all before.
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Updatable Encryption

e Updatable encryption is a symmetric primitive that allows to rotate encryption keys in
(outsourced) ciphertexts without the need to download, decrypt, re-encrypt and upload
already encrypted data

e Key generation: K; < Gen

e Encryption: C; + Enc(Ky, M)

o Next key: (Kz,Ay) < NextKey(K1)

e Update: G, + Update(Gy, Az) with property M = Dec(Ka, G)

e Security: distinguish ciphertexts for a chosen epoch, given access to keys and tokens

Observation: forward security cannot be achieved when all tokens leak



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])
e Key generation: K. < KeyGen

e Encryption: Cyyy < Enc(K, t1, M)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen

Encryption: Cyy,y < Enc(K, t1, M)

Puncturing: Ky, < Punc(K., t1)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...

e Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,
exclude more ciphertexts from being decryptable)



Starting Building Block: Symmetric Puncturable Encryption (SPE)

e Tag-based encryption scheme with fine-grained forward security (PE as a general
paradigm considered already in, e.g., [GM15,GHJL18,DGJ"521,AGJ21,...])

e Key generation: K. < KeyGen
e Encryption: Cyyy < Enc(K, t1, M)
e Puncturing: Ky < Punc(K., t1)

o Properties: Ky no longer useful to decrypt ciphertexts associated to t; (such as C{tl}),
but still all others with t,, ...

e Distinguishing feature: repeated puncturing of secret keys (add more tags to the key,
exclude more ciphertexts from being decryptable)

e Security: distinguish ciphertexts on a chosen tag t, even if punctured key on t is available
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Special Case of SPE: Epoch-Based Puncturable Encryption

Stepping back: SPE with linearly evolving epochs ey, e, ... encoded in keys
e Key generation: K, < KeyGen

Encryption: returns Ce, < Enc(Ke,, M)

Puncturing: returns K, < Punc(KL,)

Properties: K., no longer useful to decrypt ciphertexts associated to K,

Observation: coarse-grained puncturing on epochs, can we make it more fine-grained?
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Contribution: Tag-Inverse Puncturable Encryption (TIPE)

o Idea: “exclude” certain ciphertexts from epoch-based puncturing (i.e., partly inverts the
concept of tags in PE) and add expiry epochs

o Key generation: K, < KeyGen
e Encryption: C,, texp < Enc(Ke,, M, t1, exp)
e Key puncturing: (Ke,; Ae, ¢y, - - ) <= KPunc(Ke;, 1, . . )

o Exclude from puncturing: Ce, ¢ exp < EXPunc(Ce, ;. exp, Doy tr)

e Properties: M = Dec(Ke,, Ce, t,,exp) if exp > 2

e Security: distinguish ciphertexts for a chosen epoch, even if all keys and tokens are
available (except for trivial wins)
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Application: Updatable Encryption with Expiring Ciphertexts

e TIPE is a special case of updatable encryption with expiring ciphertext (latter also defined
in our work)

e Security: our defined UE notion implies CPA notions of common UE schemes

e Novel: first backwards-leak UE scheme with sub-linear ciphertexts from standard
assumptions (solves open problem posed in [GP23, MPW23])

e Glimpse of techniques: novel adaptation of dual system groups [CW13, GCTC16]
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e Forward security is an essential security feature of many cryptographic primitives
e Tag-Inverse Puncturable Encryption (TIPE) offers a novel view on new applications areas
such as updatable encryption

e Open: use TIPE for applications beyond UE?
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