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Preliminaries - Interactive Proofs (IPs)

Goal of an Interactive Proof (of Knowledge):
Prove that a statement x admits a
witness, or
Prove knowledge of a witness w for a
public statement x.

(x;w) ∈ R

P(x;w) V(x)
a0−−−−−−→
c1←−−−−−−
a1−−−−−−→
...
cµ←−−−−−−
aµ−−−−−−→ Accept/

Reject
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Preliminaries - Security Properties

Desirable Security Properties:

Completeness: Honest provers always succeed in convincing a verifier.
(Knowledge) Soundness: Dishonest provers (almost) never succeed.
Zero-Knowledge: No information about the witness is revealed.

3 / 21



Preliminaries - Knowledge Soundness

Knowledge soundness ⇐⇒ existence of a knowledge extractor.

Knowledge extractor
Input: Statement x and oracle access to a prover P∗ attacking the protocol.
Goal: Compute a witness w for statement x.
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Another Notion for IPs - Special-Soundness

Introduced in the context of Σ-protocols.
Easier to prove special-soundness than
knowledge soundness.

Definition
2-out-of-N special-soundness: Efficient algorithm
to extract a witness w from 2 ‘colliding’ protocol
transcripts (a, c, z) and (a, c′, z′).

2-out-of-N special-soundness implies knowledge
soundness with knowledge error 1/N.

1/N matches the trivial cheating probability.

(x;w) ∈ R

P(x;w) V(x)
a−−−−−−→
c←−−−−−−
z−−−−−−→ Accept/

Reject
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Natural Generalizations of Special-Soundness

1 k-out-of-N special-soundness =⇒ knowledge error (k− 1)/N.
Requires k accepting transcripts with common first message a.

2 (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) special-sound multi-round interactive proofs:
Require a tree of transcripts to extract.
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Non-Special-Sound Interactive Proofs - Amortization (1/2)

Sometimes additional structure is required to extract from sets of accepting transcripts.

Proving Knowledge of n Pre-Images Zq-Module Homomorphism Ψ

Ψ(x1) = P1 , . . . ,Ψ(xn) = Pn

P(x1,P1, . . . , xn,Pn) V(P1, . . . ,Pn)

c1,...,cn←−−−−−−−−− c1, . . . , cn ←R Zq
z =

∑
i cixi

z−−−−−−−−−→ Ψ(z) ?
=

∑
i ciPi
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Non-Special-Sound Interactive Proofs - Amortization (2/2)

P(x1,P1, . . . , xn,Pn) V(P1, . . . ,Pn)

c1,...,cn←−−−−−−−−− c1, . . . , cn ←R Zq
z =

∑
i cixi

z−−−−−−−−−→ Ψ(z) ?
=

∑
i ciPi

Extraction requires:
Transcripts (c1, z1), . . . , (cn, zn) s.t. c1, . . . , cn is a basis of Zn

q.

This IP is (qn−1 + 1)-special-sound;
q is typically exponentially large =⇒ generic extractor is inefficient.
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Non-Special-Sound Interactive Proofs - Merkle Tree Commitment

Proving Knowledge of Opening x1, . . . , xn of Merkle Tree Commitment P

P(x1, . . . , xn,P) V(P)

i1,...,ik←−−−−−−−−− i1, . . . , ik ←R {1, . . . , n}

xi1 ,...,xik−−−−−−−−−−−→
+Validation Paths

Check local openings.

Extraction requires:
Transcripts (i1, x1), . . . , (it, xt) s.t. i1, . . . , it cover {1, . . . , t}.

This IP is
(
(n− 1)k + 1

)
-special-sound;

=⇒ generic knowledge extractor is inefficient.
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This Work

A more general notion of special-soundness,
capturing the above examples;

A novel knowledge extractor;

A generalization to multi-round interactive proofs;

Parallel repetition theorem;

An application to the FRI-protocol (IOP).
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A Generalized Special-Soundness Notion

Γ ⊆ 2C is a monotone structure if
A ⊆ B ⊆ C and A ∈ Γ implies B ∈ Γ’.

A 3-round interactive proof with challenge set C is Γ-out-of-C special-sound, if
there exists an efficient algorithm to extract a witness from accepting transcripts
(a, c1, z1), . . . , (a, ck, zk) with {c1, . . . , ck} ∈ Γ.
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Examples of Γ-special-sound IPs

Examples:

k-special-sound IPs:
Challenge set C;
Γ = {S ⊆ C : |S| ≥ k}.

Amortization:
Challenge set Zn

q;
Γ = {S ⊆ Zn

q : span(S) = Zn
q}.

Merkle tree IP:
Challenge set {A ⊆ {1, . . . , n} : |A| ≤ k};
Γ = {S ⊆ C : ∪A∈SA = {1, . . . , n}}.
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Extractor for Γ-Special-Sound IPs (1/2)
Key Observation:

At any stage the extractor can partition C into a set of “useful” and “useless” challenges.

Suppose the extractor has found accepting transcripts for challenges A ⊆ C with A /∈ Γ.

The function UΓ(A) defines the useful challenges.

Examples:
k-special-sound IPs:

UΓ(A) = C \ A.
Amortization:

C = Zn
q;

UΓ(A) = C \ span(A).
Merkle tree IP:

C = {S ⊆ {1, . . . , n} : |S| ≤ k};
UΓ(A) = {B ∈ C : B 6⊆ ∪S∈AS}.
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Useful Challenges

We have to be careful when formally defining the useful challenge function UΓ.

Formal Definition

UΓ : 2C → 2C , S 7→ {c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧ A \ {c} /∈ Γ}

It holds that:

UΓ(A) ∩ A = ∅ for all A;

UΓ(B) ⊆ UΓ(A) for all A ⊆ B;

UΓ(A) = ∅ for all A ∈ Γ.
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Next Step: Extractor for Γ-Special-Sound IPs (2/2)

Main idea.
To find the ℓ-th transcript:
rewind and sample new challenge from UΓ({c1, . . . , cℓ−1}).

More precisely, we adapt the extractor for k-special-sound IPs.
Fails for the extractor from [ACK21];
Works for the extractor introduced to handle parallel repetition [AF22].
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Extractor Analysis

Crucial parameter in the analysis:

tΓ := max

{
k ∈ N0 :

∃c1, . . . , ck ∈ C s.t.
ci ∈ UΓ

(
{c1, . . . , ci−1}

)
∀i

}

Expected running time grows linearly in tΓ:
=⇒ knowledge soundness if tΓ is polynomial.
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Examples

kΓ : Threshold special-soundness parameters.
tΓ : Refined special-soundness parameters.

Challenge Set kΓ tΓ
k-special-sound Π C k k

Amortization Zn
q qn−1 + 1 n

Merkle Tree Opening {1, . . . , n}k (n− 1)k + 1 n− k + 1

t-fold Parallel of Π1 Ct (k− 1)t + 1 t · (k− 1) + 1

Another example: Local Special-Soundness

1Correction of the paper. Parallel repetition is appropriately captured by this generalization.
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Summary
This presentation:

Introduced a more general notion of special-soundness,
together with the tools to analyze this property;

Claimed that it implies knowledge soundness.

In the paper:
The knowledge extractor;
A generalization to multi-round interactive proofs;
Parallel repetition theorem;
An application to the FRI-protocol (IOP).

With a discussion on the limitations of this approach.

Next:
Analyzing the Fiat-Shamir transformation of (Γ1, . . . , Γµ)-special-sound IPs.

Follow-up work to appear soon.
Improve our FRI-extractor.

Open question.
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Thanks!
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