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Quick Overview

• We define a new notion of memory checking in the parallel RAM model. 

• We construct memory checkers for PRAMs matching the asymptotic efficiency of 
memory checkers for the RAM setting, while achieving optimal parallel depth.

• As an application, we construct maliciously secure Oblivious Parallel RAM with 
polylog overhead.
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• What if the database contents are dynamically updated?

• We want reads to correspond to most recent version! (i.e.  not )𝖽𝖺𝗍𝖺𝗇𝖾𝗐 𝖽𝖺𝗍𝖺
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𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

Abort and output ⊥

• Correctness: For any PPT malicious server, MC either aborts or gives correct 
(i.e. most recent version of address) responses. 

• Completeness: If the server behaves honestly, MC doesn’t abort.

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server
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Multiple Users Sharing Memory

• Examples

• Shared database across many clients

• CPUs with shared memory

• Distributed computing

• Integrity verification is very useful 
here too!
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Branching Timelines

We need to maintain a single consistent 
version of the database (or sacred 

timeline) across all the clients!From Marvel TV Series: Loki
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Memory Checking for Parallel RAMs
We now define a notion of memory 
checking for parallel RAMs.

Set-up phase:

•  initialize their states together.{Mi}

•No direct communication after (except 
through the server).

Note: It is possible that the clients have 
secure channels, but we want to make no 
assumptions.
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• Correctness: All  send back 
correct responses, or some  
aborts.

{Mi}i
Mj

• All reads are correct

• Concurrent writes are tie-broken 
(arbitrarily chosen by server)

• Completeness: No  aborts if 
server is not malicious.

Mj
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Memory Checking for Parallel RAMs
Efficiency metrics 

• Local Space: Space per checker. This 
talk:  words/  bits. 

• Server Space: Server storage size. 
This talk:  words. 

• Work blowup: Ratio of server 
accesses per underlying PRAM access. 

• Depth blowup: Number of parallel 
steps to support a single batch of 
requests.

O(1) O(λ)

O(N)
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…
Concurrent 

accesses

Depth: Number of parallel steps 
to execute all of these. 
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Our Results

Theorem 1. Assuming OWFs, there exists a memory checking 
protocol for PRAM programs with  worst-case 
work and depth blowup.

O(log N)

• For RAM setting, the best constructions have  work blow-up. Lower 
bound of  known for special cases. 

O(log N)
Ω(log N/log log N)

• Immediately gives: -CPU PRAM memory checker with  work blow-
up by serialising the algorithm. But  depth blowup.

m O(log N)
O(m log N)

• We show how to also obtain  depth.O(log N)
Assumption is minimal 
[Naor-Rothblum ’05]
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Application to Oblivious Parallel RAM

• Oblivious Parallel RAMs (OPRAMs) are access-pattern hiding PRAM compilers. 

• A recent work constructed an honest-but-curious OPRAM constructions with 
 blowup in both work and depth. Optimal!O(log N)

• We obtain the first construction of maliciously secure OPRAM with 
polylogarithmic overhead.

Theorem 2. Assuming OWFs, there exists an maliciously secure 
OPRAM compiler with  work and depth blowup*.O(log2 N)

[Boyle-Chung-Pass ’16]

[Asharov-Komargodski-
Lin-Peserico-Shi ’22]
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• Idea: Adapt the counting technique from a previous work [M.-Vafa ’23]

• Memory checkers maintain local counters  of the number of updates.Ti

• Every database entry is tagged with counters 𝖼𝗍𝗋i

• Verification phase: Check if .∑
i

𝖼𝗍𝗋i = ∑
j
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Where equality no longer holds 
iff exactly one CPU won.
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• Can we do the same? 
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• MC ensures all 
responses to OPRAM 
are correct. 

• Can invoke semi-
honest security of 
OPRAM!

Blowup (work and depth): 

 log N × log N = log2 N
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• At the end, the memory checker iterates over the array and verifies ∑
i

𝖼𝗍𝗋i = T .

Idea: Let  be the number of times 
 was actually accessed. 

 
  

where equality holds iff there was no 
replay attack.

tiD[i]

∑
i

𝖼𝗍𝗋i ≤ ∑
i

ti = T
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where equality holds iff server acts honestly

∑
i
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j
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since both sides are 
incremented

∑
i

𝖼𝗍𝗋i ≤ ∑
j

Tj


