
Memory Checking for

Parallel RAMs

Surya Mathialagan

MIT

Quick Overview

Quick Overview

• We define a new notion of memory checking in the parallel RAM model.

Quick Overview

• We define a new notion of memory checking in the parallel RAM model.

• We construct memory checkers for PRAMs matching the asymptotic efficiency of
memory checkers for the RAM setting, while achieving optimal parallel depth.

Quick Overview

• We define a new notion of memory checking in the parallel RAM model.

• We construct memory checkers for PRAMs matching the asymptotic efficiency of
memory checkers for the RAM setting, while achieving optimal parallel depth.

• As an application, we construct maliciously secure Oblivious Parallel RAM with
polylog overhead.

Integrity of Cloud Servers
Database 𝖣

Integrity of Cloud Servers
𝗋𝖾𝖺𝖽(3)

Database 𝖣

Integrity of Cloud Servers

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

Integrity of Cloud Servers

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

𝗋𝖾𝖺𝖽(5)

Integrity of Cloud Servers

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

𝗋𝖾𝖺𝖽(5)

𝖣[5]

Integrity of Cloud Servers

• How can a client use her small but trusted local memory to ensure that
server is sending back correct responses?

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

𝗋𝖾𝖺𝖽(5)

𝖣[5]

Integrity of Cloud Servers

• How can a client use her small but trusted local memory to ensure that
server is sending back correct responses?

• Answer: Authentication

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

𝗋𝖾𝖺𝖽(5)

𝖣[5]

Integrity of Cloud Servers

• How can a client use her small but trusted local memory to ensure that
server is sending back correct responses?

• Answer: Authentication

𝖣[3]

𝗋𝖾𝖺𝖽(3)
Database 𝖣

𝗋𝖾𝖺𝖽(5)

𝖣[5]

… if the database is static

Integrity of Cloud Servers

𝖽𝖺𝗍𝖺 := 𝖣[3]

𝗋𝖾𝖺𝖽(3) Database 𝖣

Integrity of Cloud Servers

• What if the database contents are dynamically updated?

𝖽𝖺𝗍𝖺 := 𝖣[3]

𝗋𝖾𝖺𝖽(3) Database 𝖣

Integrity of Cloud Servers

• What if the database contents are dynamically updated?

𝖽𝖺𝗍𝖺 := 𝖣[3]

𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3,𝖽𝖺𝗍𝖺𝗇𝖾𝗐)

Database 𝖣

Integrity of Cloud Servers

• What if the database contents are dynamically updated?

𝖽𝖺𝗍𝖺 := 𝖣[3]

𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3,𝖽𝖺𝗍𝖺𝗇𝖾𝗐)

𝗋𝖾𝖺𝖽(3)

Database 𝖣

Integrity of Cloud Servers

• What if the database contents are dynamically updated?

• We want reads to correspond to most recent version! (i.e. not)𝖽𝖺𝗍𝖺𝗇𝖾𝗐 𝖽𝖺𝗍𝖺

𝖽𝖺𝗍𝖺 := 𝖣[3]

𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3,𝖽𝖺𝗍𝖺𝗇𝖾𝗐)

𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺𝗇𝖾𝗐

Database 𝖣

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉Client
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

MC

Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

• Correctness: For any PPT malicious server, MC either aborts or gives correct
(i.e. most recent version of address) responses.

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

Abort and output ⊥

• Correctness: For any PPT malicious server, MC either aborts or gives correct
(i.e. most recent version of address) responses.

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

Abort and output ⊥

• Correctness: For any PPT malicious server, MC either aborts or gives correct
(i.e. most recent version of address) responses.

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Memory Checking
[Blum, Evans, Gemmel, Kannan, Naor ’94]

𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾 𝗈𝗉

Abort and output ⊥

• Correctness: For any PPT malicious server, MC either aborts or gives correct
(i.e. most recent version of address) responses.

• Completeness: If the server behaves honestly, MC doesn’t abort.

MC

Many 𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾𝗌 𝗈𝗉𝗌Client Memory Checker
Server

Multiple Users Sharing Memory

Multiple Users Sharing Memory

• Examples

Multiple Users Sharing Memory

• Examples

• Shared database across many clients

Multiple Users Sharing Memory

• Examples

• Shared database across many clients

• CPUs with shared memory

Multiple Users Sharing Memory

• Examples

• Shared database across many clients

• CPUs with shared memory

• Distributed computing

Multiple Users Sharing Memory

• Examples

• Shared database across many clients

• CPUs with shared memory

• Distributed computing

• Integrity verification is very useful
here too!

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺1 𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺2 𝖺𝖽𝖽𝗋

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺1 𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺2 𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺1 𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺2 𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖽𝖺𝗍𝖺1

𝖽𝖺𝗍𝖺2

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

This “branching” might happen even when
the server makes an “honest mistake”!!

𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺1 𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺2 𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖽𝖺𝗍𝖺1

𝖽𝖺𝗍𝖺2

More Modes of Failure!

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺𝟤)

Ø

Consider two concurrent writes:

This “branching” might happen even when
the server makes an “honest mistake”!!

𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺1 𝖺𝖽𝖽𝗋

𝖽𝖺𝗍𝖺2 𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝗋𝖾𝖺𝖽(𝖺𝖽𝖽𝗋)

𝖽𝖺𝗍𝖺1

𝖽𝖺𝗍𝖺2

Branching Timelines

From Marvel TV Series: Loki

Branching Timelines

From Marvel TV Series: Loki

Branching Timelines

We need to maintain a single consistent
version of the database (or sacred

timeline) across all the clients!From Marvel TV Series: Loki

Our Definition

Memory Checking for Parallel RAMs

M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs
We now define a notion of memory
checking for parallel RAMs.

M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs
We now define a notion of memory
checking for parallel RAMs.

Set-up phase:
M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs
We now define a notion of memory
checking for parallel RAMs.

Set-up phase:

• initialize their states together.{Mi}

M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs
We now define a notion of memory
checking for parallel RAMs.

Set-up phase:

• initialize their states together.{Mi}

•No direct communication after (except
through the server).

M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs
We now define a notion of memory
checking for parallel RAMs.

Set-up phase:

• initialize their states together.{Mi}

•No direct communication after (except
through the server).

Note: It is possible that the clients have
secure channels, but we want to make no
assumptions.

M1

M2

Mm

…
Concurrent

accesses

 Clientsm Database of size N

Memory Checking for Parallel RAMs

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

• Correctness: All send back
correct responses, or some
aborts.

{Mi}i
Mj

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

• Correctness: All send back
correct responses, or some
aborts.

{Mi}i
Mj

• All reads are correct

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

• Correctness: All send back
correct responses, or some
aborts.

{Mi}i
Mj

• All reads are correct

• Concurrent writes are tie-broken
(arbitrarily chosen by server)

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

• Correctness: All send back
correct responses, or some
aborts.

{Mi}i
Mj

• All reads are correct

• Concurrent writes are tie-broken
(arbitrarily chosen by server)

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

• Correctness: All send back
correct responses, or some
aborts.

{Mi}i
Mj

• All reads are correct

• Concurrent writes are tie-broken
(arbitrarily chosen by server)

• Completeness: No aborts if
server is not malicious.

Mj

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

M1

M2

Mm

…
Concurrent

accesses

Local Space

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

• Server Space: Server storage size.
This talk: words.O(N)

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

• Server Space: Server storage size.
This talk: words.O(N)

M1

M2

Mm

…
Concurrent

accesses

Server Space

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

• Server Space: Server storage size.
This talk: words.O(N)

• Work blowup: Ratio of server
accesses per underlying PRAM access.

M1

M2

Mm

…
Concurrent

accesses

Ratio

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

• Server Space: Server storage size.
This talk: words.O(N)

• Work blowup: Ratio of server
accesses per underlying PRAM access.

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.O(1) O(λ)

• Server Space: Server storage size.
This talk: words.O(N)

• Work blowup: Ratio of server
accesses per underlying PRAM access.

• Depth blowup: Number of parallel
steps to support a single batch of
requests.

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.

• Server Space: Server storage size.
This talk: words.

• Work blowup: Ratio of server
accesses per underlying PRAM access.

• Depth blowup: Number of parallel
steps to support a single batch of
requests.

O(1) O(λ)

O(N)

M1

M2

Mm

…
Concurrent

accesses

Memory Checking for Parallel RAMs
Efficiency metrics

• Local Space: Space per checker. This
talk: words/ bits.

• Server Space: Server storage size.
This talk: words.

• Work blowup: Ratio of server
accesses per underlying PRAM access.

• Depth blowup: Number of parallel
steps to support a single batch of
requests.

O(1) O(λ)

O(N)

M1

M2

Mm

…
Concurrent

accesses

Depth: Number of parallel steps
to execute all of these.

Our Results

Our Results

Our Results
• For RAM setting, the best constructions have work blow-up. Lower

bound of known for special cases.
O(log N)

Ω(log N/log log N)

[Blum-Evans-Gemmel-
Kannan-Naor ’91]

Our Results
• For RAM setting, the best constructions have work blow-up. Lower

bound of known for special cases.
O(log N)

Ω(log N/log log N)

[Blum-Evans-Gemmel-
Kannan-Naor ’91]

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09]

Our Results
• For RAM setting, the best constructions have work blow-up. Lower

bound of known for special cases.
O(log N)

Ω(log N/log log N)

Our Results
• For RAM setting, the best constructions have work blow-up. Lower

bound of known for special cases.
O(log N)

Ω(log N/log log N)

• Immediately gives: -CPU PRAM memory checker with work blow-
up by serialising the algorithm. But depth blowup.

m O(log N)
O(m log N)

Our Results
• For RAM setting, the best constructions have work blow-up. Lower

bound of known for special cases.
O(log N)

Ω(log N/log log N)

• Immediately gives: -CPU PRAM memory checker with work blow-
up by serialising the algorithm. But depth blowup.

m O(log N)
O(m log N)

• We show how to also obtain depth.O(log N)

Our Results

Theorem 1. Assuming OWFs, there exists a memory checking
protocol for PRAM programs with worst-case
work and depth blowup.

O(log N)

• For RAM setting, the best constructions have work blow-up. Lower
bound of known for special cases.

O(log N)
Ω(log N/log log N)

• Immediately gives: -CPU PRAM memory checker with work blow-
up by serialising the algorithm. But depth blowup.

m O(log N)
O(m log N)

• We show how to also obtain depth.O(log N)

Our Results

Theorem 1. Assuming OWFs, there exists a memory checking
protocol for PRAM programs with worst-case
work and depth blowup.

O(log N)

• For RAM setting, the best constructions have work blow-up. Lower
bound of known for special cases.

O(log N)
Ω(log N/log log N)

• Immediately gives: -CPU PRAM memory checker with work blow-
up by serialising the algorithm. But depth blowup.

m O(log N)
O(m log N)

• We show how to also obtain depth.O(log N)
Assumption is minimal
[Naor-Rothblum ’05]

Application to Oblivious Parallel RAM

Application to Oblivious Parallel RAM

• Oblivious Parallel RAMs (OPRAMs) are access-pattern hiding PRAM compilers.
[Boyle-Chung-Pass ’16]

Application to Oblivious Parallel RAM

• Oblivious Parallel RAMs (OPRAMs) are access-pattern hiding PRAM compilers.

• A recent work constructed an honest-but-curious OPRAM constructions with
 blowup in both work and depth. Optimal!O(log N)

[Boyle-Chung-Pass ’16]

[Asharov-Komargodski-
Lin-Peserico-Shi ’22]

Application to Oblivious Parallel RAM

• Oblivious Parallel RAMs (OPRAMs) are access-pattern hiding PRAM compilers.

• A recent work constructed an honest-but-curious OPRAM constructions with
 blowup in both work and depth. Optimal!O(log N)

• We obtain the first construction of maliciously secure OPRAM with
polylogarithmic overhead.

[Boyle-Chung-Pass ’16]

[Asharov-Komargodski-
Lin-Peserico-Shi ’22]

Application to Oblivious Parallel RAM

• Oblivious Parallel RAMs (OPRAMs) are access-pattern hiding PRAM compilers.

• A recent work constructed an honest-but-curious OPRAM constructions with
 blowup in both work and depth. Optimal!O(log N)

• We obtain the first construction of maliciously secure OPRAM with
polylogarithmic overhead.

Theorem 2. Assuming OWFs, there exists an maliciously secure
OPRAM compiler with work and depth blowup*.O(log2 N)

[Boyle-Chung-Pass ’16]

[Asharov-Komargodski-
Lin-Peserico-Shi ’22]

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Query phase: Answers can be wrong!
Repeat until clients say done.

M1

M2

Mm

…

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Query phase: Answers can be wrong!
Repeat until clients say done.

M1

M2

Mm

…

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Query phase: Answers can be wrong!
Repeat until clients say done.

M1

M2

Mm

…

M1

M2

Mm

…

Verification phase: Reports if all
correct or some mistake.

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Checks if any mistake happened after
a large batch of concurrent requests

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

• Idea: Adapt the counting technique from a previous work [M.-Vafa ’23]

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

• Idea: Adapt the counting technique from a previous work [M.-Vafa ’23]

• Memory checkers maintain local counters of the number of updates.Ti

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

• Idea: Adapt the counting technique from a previous work [M.-Vafa ’23]

• Memory checkers maintain local counters of the number of updates.Ti

• Every database entry is tagged with counters 𝖼𝗍𝗋i

Our Results
Theorem 3. Assuming OWFs, there exists an offline memory
checking protocol for PRAM programs with amortised
work and depth blowup.

O(1)

• Idea: Adapt the counting technique from a previous work [M.-Vafa ’23]

• Memory checkers maintain local counters of the number of updates.Ti

• Every database entry is tagged with counters 𝖼𝗍𝗋i

• Verification phase: Check if .∑
i

𝖼𝗍𝗋i = ∑
j

Tj

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

: #times updated
 #times wrote

𝖼𝗍𝗋i D[i]
Ti : Mi

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!: #times updated
 #times wrote

𝖼𝗍𝗋i D[i]
Ti : Mi

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won!
 won :(M1

 won :(M1

: #times updated
 #times wrote

𝖼𝗍𝗋i D[i]
Ti : Mi

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

: #times updated
 #times wrote

𝖼𝗍𝗋i D[i]
Ti : Mi

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Incremented!

Incremented!

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

: #times updated
 #times wrote

𝖼𝗍𝗋i D[i]
Ti : Mi

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Incremented!

Incremented!

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

Note that this maintains: 

since both sides are
incremented

∑
i

𝖼𝗍𝗋i = ∑
j

Tj
: #times updated

 #times wrote
𝖼𝗍𝗋i D[i]

Ti : Mi

Issue 1: Spoofing Attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

Issue 1: Spoofing Attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M2
 won :(M3 won :(M1

Issue 1: Spoofing Attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M2
 won :(M3 won :(M1

Idea: Use authentication, and a
careful “agreement” protocol to

ensure someone wins.

Issue 2: Branching attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

Issue 2: Branching attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won! You won! won :(M1

Issue 2: Branching attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won! You won! won :(M1 increments
 locally.

M1
T1

 increments
 locally.

M2
T2

Issue 2: Branching attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won! You won! won :(M1 increments
 locally.

M1
T1

 increments
 locally.

M2
T2

Can only
incremented by 1!!

Issue 2: Branching attack

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won! You won! won :(M1

Note that this maintains: 

Where equality no longer holds
iff exactly one CPU won.

∑
i

𝖼𝗍𝗋i ≤ ∑
j

Tj

 increments
 locally.

M1
T1

 increments
 locally.

M2
T2

Can only
incremented by 1!!

Open Problems

Open Problems
• Can we obtain a statistically secure offline memory checker for CRCW programs

with amortised overhead? O(1)

Open Problems
• Can we obtain a statistically secure offline memory checker for CRCW programs

with amortised overhead? O(1)

• Known for single RAM setting, and we show for PRAM setting without
concurrent read/writes.

Open Problems
• Can we obtain a statistically secure offline memory checker for CRCW programs

with amortised overhead? O(1)

• Known for single RAM setting, and we show for PRAM setting without
concurrent read/writes.

• Can we use these memory checkers to obtain an optimal maliciously secure
OPRAM with work and depth blow-up?O(log N)

Open Problems
• Can we obtain a statistically secure offline memory checker for CRCW programs

with amortised overhead? O(1)

• Known for single RAM setting, and we show for PRAM setting without
concurrent read/writes.

• Can we use these memory checkers to obtain an optimal maliciously secure
OPRAM with work and depth blow-up?O(log N)

• [M-Vafa ’23] shows an maliciously secure ORAM construction by
interleaving offline and online memory checking.

O(log N)

Open Problems
• Can we obtain a statistically secure offline memory checker for CRCW programs

with amortised overhead? O(1)

• Known for single RAM setting, and we show for PRAM setting without
concurrent read/writes.

• Can we use these memory checkers to obtain an optimal maliciously secure
OPRAM with work and depth blow-up?O(log N)

• [M-Vafa ’23] shows an maliciously secure ORAM construction by
interleaving offline and online memory checking.

O(log N)

• Can we do the same?

Bonus Slides

CRCW Parallel RAM Model
…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memoryConcurrent

accesses

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memoryConcurrent

accesses

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write

Concurrent

accesses

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.

Concurrent

accesses

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.

Concurrent

accesses

…

𝗋𝖾𝖺𝖽(𝟥)

𝗋𝖾𝖺𝖽(𝟥)

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.

Concurrent

accesses

…

𝗋𝖾𝖺𝖽(𝟥)

𝗋𝖾𝖺𝖽(𝟥)

D[3]

D[3]
 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.

Concurrent

accesses

…

𝗋𝖾𝖺𝖽(𝟥)

𝗋𝖾𝖺𝖽(𝟥)

D[3]

D[3]
 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.

Concurrent

accesses

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

𝖸𝖾𝗌!

⊥

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.
• Note: Not every client has to perform an operation. 

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

𝖸𝖾𝗌!

⊥

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.
• Note: Not every client has to perform an operation. 

• Two efficiency metrics for PRAM algorithms:

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

𝖸𝖾𝗌!

⊥

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.
• Note: Not every client has to perform an operation. 

• Two efficiency metrics for PRAM algorithms:
• Work: Number of read/write operations

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

𝖸𝖾𝗌!

⊥

…

 Clientsm Database of size N

CRCW Parallel RAM Model
• PRAM: Multiple CPUs accessing shared memory

• CRCW Model: Concurrent Read Concurrent Write
• Concurrent reads to any location are allowed.
• Concurrent writes to any location are arbitrarily tie-

broken.
• Note: Not every client has to perform an operation. 

• Two efficiency metrics for PRAM algorithms:
• Work: Number of read/write operations
• Depth: Number of parallel steps

Concurrent

accesses

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟣)

𝗐𝗋𝗂𝗍𝖾(𝟥, 𝖽𝖺𝗍𝖺𝟤)

𝖸𝖾𝗌!

⊥

…

 Clientsm Database of size N

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

• MC ensures all
responses to OPRAM
are correct.

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

• MC ensures all
responses to OPRAM
are correct.

• Can invoke semi-
honest security of
OPRAM!

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

• MC ensures all
responses to OPRAM
are correct.

• Can invoke semi-
honest security of
OPRAM!

Blowup (work and depth):

Idea: Compose ORAM and MC

𝒪1

𝒪2

𝒪m

…
 Clientsm

Database of
size N

OPRAM

M1

M2

Mm

Memory
Checker

Maliciously Secure OPRAM

• MC ensures all
responses to OPRAM
are correct.

• Can invoke semi-
honest security of
OPRAM!

Blowup (work and depth):

 log N × log N = log2 N

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• For entry , let number of times location was read or written to. Initialise to 0.D[i] 𝖼𝗍𝗋i = i

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• For entry , let number of times location was read or written to. Initialise to 0.D[i] 𝖼𝗍𝗋i = i

• Memory checker local stores a counter initialised to .T 0

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• For entry , let number of times location was read or written to. Initialise to 0.D[i] 𝖼𝗍𝗋i = i

• Memory checker local stores a counter initialised to .T 0

• For every access to , increment locally, and increment .D[i] T 𝖼𝗍𝗋i

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• For entry , let number of times location was read or written to. Initialise to 0.D[i] 𝖼𝗍𝗋i = i

• Memory checker local stores a counter initialised to .T 0

• For every access to , increment locally, and increment .D[i] T 𝖼𝗍𝗋i

• At the end, the memory checker iterates over the array and verifies ∑
i

𝖼𝗍𝗋i = T .

Offline-Checking for RAMs
[Blum, Evans, Gemmel, Kannan, Naor ’94], this construction is based on [M, Vafa `23]

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• For entry , let number of times location was read or written to. Initialise to 0.D[i] 𝖼𝗍𝗋i = i

• Memory checker local stores a counter initialised to .T 0

• For every access to , increment locally, and increment .D[i] T 𝖼𝗍𝗋i

• At the end, the memory checker iterates over the array and verifies ∑
i

𝖼𝗍𝗋i = T .

Idea: Let be the number of times
 was actually accessed. 

 
  

where equality holds iff there was no
replay attack.

tiD[i]

∑
i

𝖼𝗍𝗋i ≤ ∑
i

ti = T

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

• As before: Initialise all entries with and authenticate all entries.

• Each keeps a local count .

𝖼𝗍𝗋i = 0

Mi Ti

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
 𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3
T1 T2 T3

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
 𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3
T1 T2 T3

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
 𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3
T1 T2 T3

Idea: Want to maintain  

 

where equality holds iff server acts honestly

∑
i

𝖼𝗍𝗋i ≤ ∑
j

Tj

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

You won!
 won :(M1

 won :(M1

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Incremented!

Incremented!

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

New: Offline-Checking for PRAMs

D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]
𝖼𝗍𝗋1 𝖼𝗍𝗋2 𝖼𝗍𝗋3 𝖼𝗍𝗋4 𝖼𝗍𝗋5 𝖼𝗍𝗋6 𝖼𝗍𝗋7 𝖼𝗍𝗋8

M1 M2 M3

𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺1) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺2) 𝗐𝗋𝗂𝗍𝖾(4,𝖽𝖺𝗍𝖺3)

T1 T2 T3

Pick me!
Pick me!

Pick me!

 won :(M1
 won :(M1

Incremented!

Incremented!

Write back
and increment

𝖽𝖺𝗍𝖺1
𝖼𝗍𝗋4

Note that this maintains: 

since both sides are
incremented

∑
i

𝖼𝗍𝗋i ≤ ∑
j

Tj

