
TCC 2023

Towards Topology-Hiding
Computation from Oblivious Transfer
Marshall Ball, Alexander Bienstock, Lisa Kohl, Pierre Meyer

What is Topology-Hiding Computation (THC)?

What is Topology-Hiding Computation (THC)?
Starting Point: Secure Multi-Party Computation

• Parties with inputs privately compute function

• Adversary (corrupting possibly many parties) learns nothing beyond inputs of
corrupted parties and output

P0, …, Pn−1 x0, …, xn−1 ℱ(x0, …, xn−1)

What is Topology-Hiding Computation (THC)?
Starting Point: Secure Multi-Party Computation

😈

😈

😈

• Parties with inputs privately compute function

• Adversary (corrupting possibly many parties) learns nothing beyond inputs of
corrupted parties and output

P0, …, Pn−1 x0, …, xn−1 ℱ(x0, …, xn−1)

• Typically -- assume secure point-to-point communication channels between all parties

What is Topology-Hiding Computation (THC)?
Starting Point: Secure Multi-Party Computation

😈

😈

😈

What is Topology-Hiding Computation (THC)?
Connectivity in MPC

What is Topology-Hiding Computation (THC)?
Connectivity in MPC

What is Topology-Hiding Computation (THC)?
Connectivity in MPC

What is Topology-Hiding Computation (THC)?
Topology Privacy

What is Topology-Hiding Computation (THC)?
Topology Privacy

• Should we keep features of the topology private?

What is Topology-Hiding Computation (THC)?
Topology Privacy

• Should we keep features of the topology private?

• Maybe topology is based on location data (e.g., vehicle-to-vehicle comms)

What is Topology-Hiding Computation (THC)?
Topology Privacy

• Should we keep features of the topology private?

• Maybe topology is based on location data (e.g., vehicle-to-vehicle comms)

• Maybe topology is based on users' relationships (e.g., social networks)

What is Topology-Hiding Computation (THC)?
Topology Privacy

• Should we keep features of the topology private?

• Maybe topology is based on location data (e.g., vehicle-to-vehicle comms)

• Maybe topology is based on users' relationships (e.g., social networks)

• What does this mean?

What is Topology-Hiding Computation (THC)?
Topology Privacy

What is Topology-Hiding Computation (THC)?
Topology Privacy

😈

What is Topology-Hiding Computation (THC)?
Topology Privacy

😈

What is Topology-Hiding Computation (THC)?
Topology Privacy

Goal: should learn
nothing else beyond its
local view (its neighbors)

P6

😈

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

• A protocol is a Topology-Hiding Computation Protocol for a graph class
and functionality if:

Π 𝒢
ℱ

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

• A protocol is a Topology-Hiding Computation Protocol for a graph class
and functionality if:

Π 𝒢
ℱ

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

) 𝖲𝗂𝗆(𝒢, x6, ℱ(x0, …, xn−1), ≈ 𝖵𝗂𝖾𝗐(Π)6

• A protocol is a Topology-Hiding Computation Protocol for a graph class
and functionality if:

Π 𝒢
ℱ

• (Protocol reveals nothing beyond input/output, and neighbors in graph)

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

) 𝖲𝗂𝗆(𝒢, x6, ℱ(x0, …, xn−1), ≈ 𝖵𝗂𝖾𝗐(Π)6

• A protocol is a Topology-Hiding Computation Protocol for a graph class
and functionality if:

Π 𝒢
ℱ

• (Protocol reveals nothing beyond input/output, and neighbors in graph)

• Can consider different number of corruptions, passive/active, static/adaptive

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

) 𝖲𝗂𝗆(𝒢, x6, ℱ(x0, …, xn−1), ≈ 𝖵𝗂𝖾𝗐(Π)6

Why is THC hard (even with passive adversaries)?
Flooding Broadcast

BC

P2

P3

P4

P5 P6

Why is THC hard (even with passive adversaries)?
Flooding Broadcast

BC

P2

P3

P4

P5 P6

Why is THC hard (even with passive adversaries)?
Flooding Broadcast

BC

P2

P3

P4

P5 P6

Why is THC hard (even with passive adversaries)?
Flooding Broadcast

Each party learns:

• Distance to BC

• Nbrs' distance to BC

Not Topology-Hiding!
BC

P2

P3

P4

P5 P6

Our Question

Oblivious Transfer MPCTHC

Our Question

Oblivious Transfer MPCTHC

Our Question

Oblivious Transfer MPCTHC

Our Question

Oblivious Transfer MPCTHC
???

Known Results
Semi-Honest, Static, Arbitrary Number of Corruptions

Known Results
Semi-Honest, Static, Arbitrary Number of Corruptions

• [MOR15]: Constant Round MPC with Constant Overhead => THC for graphs
with constant degree and logarithmic diameter

Known Results
Semi-Honest, Static, Arbitrary Number of Corruptions

• [MOR15]: Constant Round MPC with Constant Overhead => THC for graphs
with constant degree and logarithmic diameter

• [AM17,ALM17,LZM+18]: Key-homomorphic, re-randomizable encryption =>
THC for all graphs

• Only known from structured algebraic assumptions; e.g., QR, DDH, LWE

Our Contributions

Our Contributions

• Assuming constant round 2PC with constant overhead, THC for semi-honest,
static adversaries corrupting all-but-one parties exists for all graphs

Our Contributions

• Assuming constant round 2PC with constant overhead, THC for semi-honest,
static adversaries corrupting all-but-one parties exists for all graphs

1. Define Locally-Simulatable MPC (for any fixed Graph)

Our Contributions

• Assuming constant round 2PC with constant overhead, THC for semi-honest,
static adversaries corrupting all-but-one parties exists for all graphs

1. Define Locally-Simulatable MPC (for any fixed Graph)

2. Use Locally-Simulatability + Correlated Random Walks [ALM17] to reduce
THC to Locally-Simulatable OR on a Path

Our Contributions

• Assuming constant round 2PC with constant overhead, THC for semi-honest,
static adversaries corrupting all-but-one parties exists for all graphs

1. Define Locally-Simulatable MPC (for any fixed Graph)

2. Use Locally-Simulatability + Correlated Random Walks [ALM17] to reduce
THC to Locally-Simulatable OR on a Path

3. Construct Locally-Simulatable OR on a Path from constant round 2PC
with constant overhead

Correlated Random Walks [ALM17]

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

For each time step, each node defines a permutation on its neighborsu

t1 t2

Correlated Random Walks [ALM17]

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

For each time step, each node defines a permutation on its neighborsu

t1 t2

Correlated Random Walks [ALM17]

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

For each time step, each node defines a permutation on its neighborsu

t1 t2

Correlated Random Walks [ALM17]

u

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

(Walks start from every
node, not just)u

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

(Walks start from every
node, not just)u

• "Correlated" -- exactly
one walk through each
edge at each time step

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

(Walks start from every
node, not just)u

• "Correlated" -- exactly
one walk through each
edge at each time step

• "Random" -- The law of
each individual walk is
random

This establishes several (correlated) random walks

Correlated Random Walks [ALM17]

u

(Walks start from every
node, not just)u

• "Correlated" -- exactly
one walk through each
edge at each time step

• "Random" -- The law of
each individual walk is
random

• Maybe we can design
protocols just for paths
now?

This establishes several (correlated) random walks

Locally Simulatable MPC on a Path

2 3 4 5 6 7 8 91

😈 😈

• New Requirement: Can simulate views of 4 and independently --

• Namely, independent

8

{𝖲𝗂𝗆(x4, y; r4), 𝖲𝗂𝗆(x8, y; r8)} ≈ 𝖵𝗂𝖾𝗐(Π)4,8

r4, r8

Locally Simulatable MPC on a Path

2 3 4 5 6 7 8 91

😈 😈

Reducing THC to Locally Simulatable OR on a Path

Reducing THC to Locally Simulatable OR on a Path

• Fact: Once you have Topology-Hiding Broadcast (THB), can easily build
THC

Reducing THC to Locally Simulatable OR on a Path

• Fact: Once you have Topology-Hiding Broadcast (THB), can easily build
THC

• Using THB, can first instantiate (topology-hiding) secure channels
between parties using Key Exchange

Reducing THC to Locally Simulatable OR on a Path

• Fact: Once you have Topology-Hiding Broadcast (THB), can easily build
THC

• Using THB, can first instantiate (topology-hiding) secure channels
between parties using Key Exchange

• With these secure channels, can use any (standard) MPC to get THC

Reducing THC to Locally Simulatable OR on a Path

• Fact: Once you have Topology-Hiding Broadcast (THB), can easily build
THC

• Using THB, can first instantiate (topology-hiding) secure channels
between parties using Key Exchange

• With these secure channels, can use any (standard) MPC to get THC

• Broadcast == OR function where broadcaster inputs broadcast bit,
everyone else inputs 0

Reducing THC to Locally Simulatable OR on a Path
THB Protocol

Reducing THC to Locally Simulatable OR on a Path

• : Build Correlated Random Walks, and for each walk, run Locally Simulatable
OR protocol
Π

THB Protocol

Reducing THC to Locally Simulatable OR on a Path

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

• : Build Correlated Random Walks, and for each walk, run Locally Simulatable
OR protocol
Π

𝖤𝗑𝖾𝖼1 𝖤𝗑𝖾𝖼2

THB Protocol

Reducing THC to Locally Simulatable OR on a Path

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

• : Build Correlated Random Walks, and for each walk, run Locally Simulatable
OR protocol
Π

• From view of , , these look the same due to locally simulatabilityP3 P6

𝖤𝗑𝖾𝖼1 𝖤𝗑𝖾𝖼2

THB Protocol

Reduction to Locally Simulatable OR on a Path

Reduction to Locally Simulatable OR on a Path
• For each step , just need to simulate independently 's view as the -th node

on several paths (same for)
t P3 t

P6

Reduction to Locally Simulatable OR on a Path

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

• For each step , just need to simulate independently 's view as the -th node
on several paths (same for)

t P3 t
P6

t = 1 t = 2

Reduction to Locally Simulatable OR on a Path

u

P2

P3

P4

P5 P6

u

P2

P3

P4

P5 P6

• For each step , just need to simulate independently 's view as the -th node
on several paths (same for)

t P3 t
P6

• Can be done using local simulation

t = 1 t = 2

Locally Simulatable OR on a Path
 partiesn = 8

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

 to emulate
on input
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

 to emulate
on input
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

 to emulate
on input
𝟤𝖯𝖢 P0,1

x1,2 ∨ x1,3

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

 to emulate
on input
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

 to emulate
on input
𝟤𝖯𝖢 P0,1

x1,2 ∨ x1,3

P1 P2 P3 P4 P5 P6 P7 P8

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

 to emulate
on input
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

 to emulate
on input
𝟤𝖯𝖢 P0,1

x1,2 ∨ x1,3

P1 P2 P3 P4 P5 P6 P7 P8

 to emulate
on input
𝟤𝖯𝖢 P1,0

x1 ∨ x2

Locally Simulatable OR on a Path
 partiesn = 8

P0,0 P0,1

𝟤𝖯𝖢(x0,0 ∨ x0,1)

P1,0 P1,1 P1,2 P1,3

 to emulate
on input
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

 to emulate
on input
𝟤𝖯𝖢 P0,1

x1,2 ∨ x1,3

P1 P2 P3 P4 P5 P6 P7 P8

 to emulate
on input
𝟤𝖯𝖢 P1,0

x1 ∨ x2

 to emulate
on input
𝟤𝖯𝖢 P1,1

x3 ∨ x4

 to emulate
on input
𝟤𝖯𝖢 P1,2

x5 ∨ x6

 to emulate
on input
𝟤𝖯𝖢 P1,3

x7 ∨ x8

Some Remarks
Locally Simulatable OR on a Path

Some Remarks

• Cannot use [MOR15] protocol here (diameter is -- so too inefficient)n

• [MOR15] is also recursive; but ours is more efficient

Locally Simulatable OR on a Path

Some Remarks

• Cannot use [MOR15] protocol here (diameter is -- so too inefficient)n

• [MOR15] is also recursive; but ours is more efficient

• Some subtleties in proof

• Need to simulate messages for virtual party without entire input (not an issue
for [MOR15])

Locally Simulatable OR on a Path

Some Remarks

• Cannot use [MOR15] protocol here (diameter is -- so too inefficient)n

• [MOR15] is also recursive; but ours is more efficient

• Some subtleties in proof

• Need to simulate messages for virtual party without entire input (not an issue
for [MOR15])

• If OR = 0, Sim knows all honest inputs = 0 (easy)

Locally Simulatable OR on a Path

Some Remarks

• Cannot use [MOR15] protocol here (diameter is -- so too inefficient)n

• [MOR15] is also recursive; but ours is more efficient

• Some subtleties in proof

• Need to simulate messages for virtual party without entire input (not an issue
for [MOR15])

• If OR = 0, Sim knows all honest inputs = 0 (easy)

• If OR = 1, Sim pretends all honest inputs = 1 -- OK since simulated
messages should be independent of virtual party's input

Locally Simulatable OR on a Path

Conclusion

• We build THC from constant round 2PC with constant overhead

• First such result for all graph classes (even with constant round/overhead)

• We define Locally Simulatable MPC (may be of independent interest)

• Still Open:

• THC for all graph classes with only (polynomial-round) Oblivious Transfer?

Thanks!

What is Topology-Hiding Computation (THC)?

P4P3

P2P1

P4

What is Topology-Hiding Computation (THC)?

P100

P3

P2

P1

P99

...

...

...

...

P50

P25

P75

• Requirement: Can simulate views of and independently --

• No Topology-Hiding (Directly) Needed!!

P3 P2

{𝖲𝗂𝗆(x3, y, (4-3-6)), 𝖲𝗂𝗆(x2, y, (1-2-8))} ≈ 𝖵𝗂𝖾𝗐(Π)3,2

Local Simulation on a Path

2 3 4 5 6 7 8 91

P9 P7 P4 P3 P6 P5 P1 P2 P8

😈 😈

Local Simulation on a Path

P7P4 P3 P6P5 P1 P2 P8

😈 😈
P9 2 3 4 5 6 7 8 91

P9 P7P4 P3 P6P5 P1 P2 P8

• Requirement: Can simulate views of and independently --

• No Topology-Hiding (Directly) Needed!!

P3 P2

{𝖲𝗂𝗆(x3, y, (4-3-6)), 𝖲𝗂𝗆(x2, y, (1-2-8))} ≈ 𝖵𝗂𝖾𝗐(Π)3,2

