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• Parties  with inputs  privately compute function 


• Adversary (corrupting possibly many parties) learns nothing beyond inputs of 
corrupted parties and output
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• Typically -- assume secure point-to-point communication channels between all parties
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Topology Privacy

• Should we keep features of the topology private?

• Maybe topology is based on location data (e.g., vehicle-to-vehicle comms)

• Maybe topology is based on users' relationships (e.g., social networks)

• What does this mean?
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What is Topology-Hiding Computation (THC)?
Topology Privacy

Goal:  should learn 
nothing else beyond its 
local view (its neighbors)
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• A protocol  is a Topology-Hiding Computation Protocol for a graph class  
and functionality  if:

Π 𝒢
ℱ

• (Protocol reveals nothing beyond input/output, and neighbors in graph)

• Can consider different number of corruptions, passive/active, static/adaptive

What is Topology-Hiding Computation (THC)?
Definition [MOR15]

                              ) 𝖲𝗂𝗆(𝒢, x6, ℱ(x0, …, xn−1), ≈ 𝖵𝗂𝖾𝗐(Π)6
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Why is THC hard (even with passive adversaries)?
Flooding Broadcast

Each party learns:


• Distance to BC


• Nbrs' distance to BC


Not Topology-Hiding!
BC
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Known Results
Semi-Honest, Static, Arbitrary Number of Corruptions

• [MOR15]: Constant Round MPC with Constant Overhead => THC for graphs 
with constant degree and logarithmic diameter

• [AM17,ALM17,LZM+18]: Key-homomorphic, re-randomizable encryption => 
THC for all graphs


• Only known from structured algebraic assumptions; e.g., QR, DDH, LWE
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Our Contributions

• Assuming constant round 2PC with constant overhead, THC for semi-honest, 
static adversaries corrupting all-but-one parties exists for all graphs

1. Define Locally-Simulatable MPC (for any fixed Graph)

2. Use Locally-Simulatability + Correlated Random Walks [ALM17] to reduce 
THC to Locally-Simulatable OR on a Path

3. Construct Locally-Simulatable OR on a Path from constant round 2PC 
with constant overhead
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Correlated Random Walks [ALM17]

u

(Walks start from every 
node, not just )u

• "Correlated" -- exactly 
one walk through each 
edge at each time step

• "Random" -- The law of 
each individual walk is 
random

• Maybe we can design 
protocols just for paths 
now?

This establishes several (correlated) random walks
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2 3 4 5 6 7 8 91

😈 😈



• New Requirement: Can simulate views of 4 and  independently --





• Namely,  independent

8

{𝖲𝗂𝗆(x4, y; r4), 𝖲𝗂𝗆(x8, y; r8)} ≈ 𝖵𝗂𝖾𝗐(Π)4,8

r4, r8

Locally Simulatable MPC on a Path
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• Fact: Once you have Topology-Hiding Broadcast (THB), can easily build 
THC

• Using THB, can first instantiate (topology-hiding) secure channels 
between parties using Key Exchange

• With these secure channels, can use any (standard) MPC to get THC

• Broadcast == OR function where broadcaster inputs broadcast bit, 
everyone else inputs 0
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P5 P6

• : Build Correlated Random Walks, and for each walk, run Locally Simulatable 
OR protocol
Π

• From view of , , these look the same due to locally simulatabilityP3 P6

𝖤𝗑𝖾𝖼1 𝖤𝗑𝖾𝖼2

THB Protocol
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u

P2

P3

P4

P5 P6

• For each step , just need to simulate independently 's view as the -th node 
on several paths (same for )

t P3 t
P6

• Can be done using local simulation

t = 1 t = 2
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 to emulate  
on input 
𝟤𝖯𝖢 P0,0

x1,0 ∨ x1,1

 to emulate  
on input 
𝟤𝖯𝖢 P0,1

x1,2 ∨ x1,3

P1 P2 P3 P4 P5 P6 P7 P8

 to emulate  
on input 
𝟤𝖯𝖢 P1,0

x1 ∨ x2

 to emulate  
on input 
𝟤𝖯𝖢 P1,1

x3 ∨ x4

 to emulate  
on input 
𝟤𝖯𝖢 P1,2

x5 ∨ x6

 to emulate  
on input 
𝟤𝖯𝖢 P1,3

x7 ∨ x8
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Some Remarks

• Cannot use [MOR15] protocol here (diameter is  -- so too inefficient)n

• [MOR15] is also recursive; but ours is more efficient

• Some subtleties in proof

• Need to simulate messages for virtual party without entire input (not an issue 
for [MOR15])

• If OR = 0, Sim knows all honest inputs = 0 (easy)

• If OR = 1, Sim pretends all honest inputs = 1 -- OK since simulated 
messages should be independent of virtual party's input

Locally Simulatable OR on a Path



Conclusion

• We build THC from constant round 2PC with constant overhead


• First such result for all graph classes (even with constant round/overhead)


• We define Locally Simulatable MPC (may be of independent interest)


• Still Open:


• THC for all graph classes with only (polynomial-round) Oblivious Transfer?



Thanks!
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