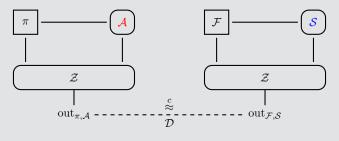
Composable Long-Term Security with Rewinding

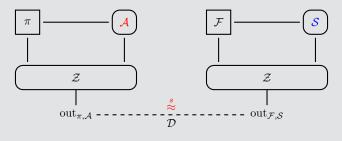
Robin Berger¹, Brandon Broadnax, <u>Michael Klooß^{1 \rightarrow 2}</u>, Jeremias Mechler¹, Jörn Müller-Quade¹, Astrid Ottenhues¹, Markus Raiber¹ 2023-12-02 ©TCC



¹KASTEL Security Research Labs, Karlsruhe Institute of Technology ²Aalto University

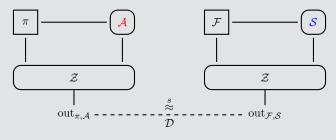
Computational UC in a nutshell [Can01; Can20]

Security experiment (Computional UC)


- PPT \mathcal{A} , \mathcal{S} , \mathcal{Z} where \mathcal{Z} outputs a string out.
- **PPT** distinguisher \mathcal{D} gets out.

Statistical UC in a nutshell [Can01; Can20]

Security experiment (Statistical UC)


- Unbounded \mathcal{A} , \mathcal{S} , \mathcal{Z} where \mathcal{Z} outputs a string out.
- **Unbounded** distinguisher \mathcal{D} gets out.

Long-Term UC in a nutshell [MU07]

Security experiment (Long-Term UC)

- PPT \mathcal{A} , \mathcal{S} , \mathcal{Z} where \mathcal{Z} outputs a string out.
- \bullet Unbounded distinguisher ${\cal D}$ gets ${\rm out.}$

→ hardness assumptions hold (only) during protocol execution.

Long-Term UC commitments

Possibility results

 \mathcal{F}_{Com} from hardware assumptions (signature card [MU07], PUF+CRS [Mag+22]).

Impossibility result [MU07]

 \mathcal{F}_{Com} is impossible to realize in the CRS-hybrid model or any long-term revealing setup.

Long-Term UC commitments

Possibility results

 \mathcal{F}_{Com} from hardware assumptions (signature card [MU07], PUF+CRS [Mag+22]).

Impossibility result [MU07]

 \mathcal{F}_{Com} is impossible to realize in the CRS-hybrid model or any long-term revealing setup.

Core problem

- $\bullet\,$ If CRS is not stat. hiding, ${\cal D}$ can extract.
- If CRS is stat. hiding, *S* cannot *straightline* extract...

Long-Term UC commitments

Possibility results

 \mathcal{F}_{Com} from hardware assumptions (signature card [MU07], PUF+CRS [Mag+22]).

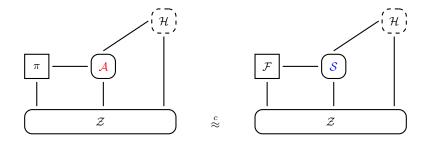
Impossibility result [MU07]

 \mathcal{F}_{Com} is impossible to realize in the CRS-hybrid model or any long-term revealing setup.

Core problem

- $\bullet\,$ If CRS is not stat. hiding, ${\cal D}$ can extract.
- If CRS is stat. hiding, *S* cannot *straightline* extract...
- ...but what about rewinding?

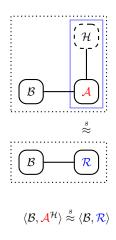
Our contribution


- New notion: Long-term rewinding UC (LTR-UC).
- New possibilities/protocols:
 - LTR-UC-secure \mathcal{F}_{Com} in the CRS-hybrid model (and commit-and-prove ZK).
 - One-sided LTR-UC-secure OT.
- New impossibilities: No full LTR-UC-secure OT from long-term revealing assumptions.
- New tools: Pseudo-oracles and their properties.

Angel-based UC security

Angel-based UC [PS04]

- Global entity, helper or angel \mathcal{H} with "special power".
- E.g.: \mathcal{H} brute-forces commitments under *judiciously chosen circumstances*.


Rewinding-simulatable angels

[CLP10; Goy+15]

- ${\mathcal H}$ is a CCA commitment oracle:
 - $\circ~\mathcal{A}$ can run COM with $\mathcal{H}.$
 - $\circ~\mathcal{H}$ will brute-force extracts accepting commitments.
- ${\mathcal H}$ is simulatable in PPT via rewinding through ${\mathcal R}.$

Robust rewinding

- UC simulation is straightline \rightsquigarrow use ${\mathcal H}$
- Security reductions \rightsquigarrow use \mathcal{R} .
- k-robust rewinding: Exempt k-round "left side" from being rewound.

Rewinding-based angels/oracles?

- \bullet LTR-UC also based on a CCA commitment oracle $\mathcal{H}.$
- But what is an "angel/oracle that rewinds"?

Pseudo-Oracles

Oracle/ITM

Stateful $\mathcal O$ gets message from $\mathcal A$, returns output.

 \rightsquigarrow Inherently unable to rewind $\mathcal{A}.$

Pseudo-Oracles

Oracle/ITM

Stateful $\mathcal O$ gets message from $\mathcal A$, returns output.

 \rightsquigarrow Inherently unable to rewind $\mathcal{A}.$

Pseudo-Oracle

Stateful ${\mathcal O}$ gets message and view of ${\mathcal A},$ returns output.

Properties of pseudo-oracles

Black-box

 \mathcal{O} only uses \mathcal{A} black-box (instead of view (\mathcal{A})).

Properties of pseudo-oracles

Black-box

 \mathcal{O} only uses \mathcal{A} black-box (instead of view (\mathcal{A})).

k-robust pseudo-PPT ($\hat{=}$ rewinding simulatable)

For any k-round \mathcal{B} :

$$\exists \mathsf{PPT} \ \mathcal{R} \colon \quad \langle \mathcal{B}, \mathcal{A}^{\mathcal{O}} \rangle \stackrel{s}{\approx} \langle \mathcal{B}, \mathcal{R} \rangle$$

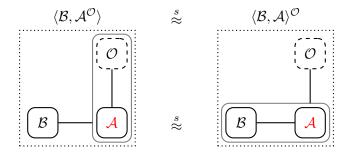
Properties of pseudo-oracles

Black-box

 \mathcal{O} only uses \mathcal{A} black-box (instead of view (\mathcal{A})).

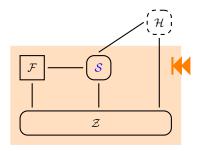
k-robust pseudo-PPT ($\hat{=}$ rewinding simulatable)

For any k-round \mathcal{B} :

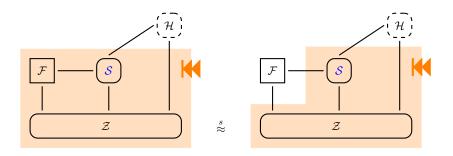

$$\exists \mathsf{PPT} \ \mathcal{R} \colon \quad \langle \mathcal{B}, \mathcal{A}^{\mathcal{O}} \rangle \stackrel{s}{\approx} \langle \mathcal{B}, \mathcal{R} \rangle$$

k-robust composition-order invariant

For any k-round \mathcal{B} :


 $\langle \mathcal{B}, \mathcal{A}^{\mathcal{O}} \rangle \stackrel{s}{\approx} \langle \mathcal{B}, \mathcal{A} \rangle^{\mathcal{O}}$

Composition-order invariance (COI)


Why is LTR-UC meaningful at all?

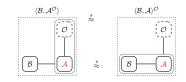
- LTR-UC angel $\mathcal H$ rewinds environment and ideal functionalities!
- What remains of the ideal guarantees of \mathcal{F} ?

Why is LTR-UC meaningful at all?

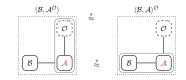
- LTR-UC angel $\mathcal H$ rewinds environment and ideal functionalities!
- What remains of the ideal guarantees of \mathcal{F} ?
- k-robust COI \implies meaningful for k-round functionalities.

Conclusion

- LTR-UC brings rewinding-based simulation to UC.
 - New possibilities: Com, ZK, one-sided-secure OT from CRS
 - Old impossibilities: (fully secure) OT from long-term revealing assumptions.
- Pseudo-Oracles \neq Oracles: Basic properties need non-trivial proofs.


Conclusion

- LTR-UC brings rewinding-based simulation to UC.
 - New possibilities: Com, ZK, one-sided-secure OT from CRS
 - Old impossibilities: (fully secure) OT from long-term revealing assumptions.
- Pseudo-Oracles \neq Oracles: Basic properties need non-trivial proofs.


COI for our CCA-Com $\ensuremath{\mathcal{O}}$

Core difference to [CLP10; Goy+15]:

- [CLP10; Goy+15]: COI holds unconditionally due to bruteforce extraction.
- This work: COI via reduction to hardness assumption.

COI for our CCA-Com ${\cal O}$

Core difference to [CLP10; Goy+15]:

- [CLP10; Goy+15]: COI holds unconditionally due to bruteforce extraction.
- This work: COI via reduction to hardness assumption.

Proof idea (based on [PRS02] rewinding schedule):

- Given same randomness, **main thread** execution is **identical**, **unless** different committed values extracted (during look-ahead).
- Reduce different extracted values to binding break of COM.

References I

- [Can01] Ran Canetti. "Universally Composable Security: A New Paradigm for Cryptographic Protocols". In: **42nd FOCS**. Oct. 2001.
- [Can20] Ran Canetti. "Universally Composable Security". In: J. ACM 67.5 (2020).
- [CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. "Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions". In: 51st FOCS. Oct. 2010.
- [Goy+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. "Round-Efficient Concurrently Composable Secure Computation via a Robust Extraction Lemma". In: TCC 2015, Part I. Vol. 9014. LNCS. Mar. 2015.
- [Mag+22] Bernardo Magri, Giulio Malavolta, Dominique Schröder, and Dominique Unruh. "Everlasting UC Commitments from Fully Malicious PUFs". In: Journal of Cryptology 35.3 (July 2022).
- [MU07] Jörn Müller-Quade and Dominique Unruh. **"Long-Term Security and** Universal Composability". In: TCC 2007. Vol. 4392. LNCS. Feb. 2007.

References II

- [PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. "Concurrent Zero Knowledge with Logarithmic Round-Complexity". In: 43rd FOCS. Nov. 2002.
- [PS04] Manoj Prabhakaran and Amit Sahai. "New notions of security: Achieving universal composability without trusted setup". In: 36th ACM STOC. June 2004.

Image sources

• Peter J. Yost, CC-BY-SA 4.0.