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SNARG (Succinct Non-interactive ARGument)

statement: x ∈ L

P V
G
π

crs crs

▶ Completeness: x ∈ L ⇒ honest P can convince V
▶ Soundness: x < L ⇒ any PPT P∗ cannot convince V
▶ Succinctness: proof length / verification time are very small
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SNARG for Subsets of NP
▶ SNARG for P

• statement: x (true iff M(x) = 1 for a pre-determined poly-time TM M)
• succinctness: verification time is poly(|x|, log T), where T B M’s runtime

▶ SNARG for Batch-NP

• statement: (Ckt, x1, . . . , xk) (true iff ∀i ∈ [k], ∃wi s.t. Ckt(xi,wi) = 1)
• succinctness: proof length is poly(|Ckt|, log k)

Both can be achieved under standard assumptions!
(e.g., LWE, DLIN over bilinear maps, sub-exponential DDH)

[CJJ21, KVZ21, HJKS22, WW22, CGJJZ23, …]
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Can Verification Time Be Sublinear in |Statement|?
▶ Goal: making verification time be sub-linear in |x| (for the case of P) and sub-linear in
|x1| + · · · + |xk| (for the case of Batch-NP)

• Possible if the statement is given to V in a pre-processed format
(e.g., V is given a digest of x or (x1, . . . , xk) [KP16, CJJ21, KVZ21, DGKV22, …])

P V( )
x

dπ
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Our Target: Holographic SNARG (1/2)
▶ Verification time is sub-linear in the statement length when V is given

oracle access to an encoding of the statement

P V

x

x̂ B Encode(x)

π

▶ Related notions:
• Holographic PCPs [BFLS91], Holographic IOPs [CHMMVW20, COS20] , Holographic

interactive proofs/arguments [GR17, BR22]
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Our Target: Holographic SNARG (2/2)
▶ Application:

• 2-round arguments of proximity [KR15], 3-round ZK arguments [BKP18, K22],
probabilistically checkable arguments [BR22]

▶ Why useful as building block?
• x̂ has many nice proprieties (e.g., information theoretic & locally testable)
• Verification of arbitrary computations is reduced to simple checks about x̂

P V
x̂ B Encode(x)

π
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Our Results (1/2)

Theorem 1 (main result)
Two holographic SNARGs under the LWE assumption
1. For P, and verification time is poly(λ, log|x|, log T)
2. For Batch-NP, and verification time is poly(λ, |Ckt|, log k)
(λ B security parameter)

(As in prior constructions, the encoding we use is low-degree encoding (LDE))

▶ Prior constructions: either in the designated-verifier setting [KRR22, BHK17] or under
the sub-exponential hardness of LWE [K22]

▶ Ours: publicly verifiable and under the polynomial hardness of LWE
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Our Results (2/2)

Theorem 2 (application of our holographic SNARGs)
Public-coin 3-round ZK argument from slightly super-poly hardness of
LWE and keyless multi-collision-resistant hash function

▶ Our holographic SNARGs + existing transformation [BKP18, K22]

▶ Prior to this result:
• Private-coin: slightly super-poly hardness is sufficient for LWE [BKP18]
• Public-coin: sub-exponential hardness is required for LWE [K22]
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Technical Overview
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for P
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SNARG

for Batch-NP
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for P and Batch-NP
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because V computes
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How about delegating the computation
of the digest to P?
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Holographic
SNARGs

for somewhere
extractable hash

Key Points:
1. weak soundness
(guaranteeing that extractable
value and input string are
consistent)
2. recursive construction
(each recursion depends
only on a small part of
the encoding of statement)

Key Point:
construction relies on simple
structure of Merkle hash
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Conclusion

▶ Main Result:
• Holographic SNARGs for P and Batch-NP from LWE

▶ Application:
• Public-coin 3-round ZK from weaker assumptions

(closing the gap between public-coin 3-round ZK and private-coin one)

Thank you!
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