
TCC 2023, Taipei

Weakening Assumptions for
Publicly-Verifiable Deletion
James Bartusek, Dakshita Khurana, Giulio Malavolta, Alexander
Poremba, Michael Walter

How to Delete Data

D

How to Delete Data

Encode D

D D

How to Delete Data

Encode D

D
“Please delete my data”

D

How to Delete Data

Encode D

D
“Please delete my data”

π
D

How to Delete Data

Encode D

D
“Please delete my data”

π
D

• Classically: Possible if the server is honest

How to Delete Data

Encode D

D
“Please delete my data”

π
D

• Classically: Possible if the server is honest

• Quantumly: Possible if the server is malicious but computationally bounded

| ⟩

| ⟩

How to Delete Data

Encode D

D
“Please delete my data”

π
D

• Classically: Possible if the server is honest

• Quantumly: Possible if the server is malicious but computationally bounded

| ⟩

| ⟩

Commitments, SKE, PKE, ABE, WE, (Q)FHE, TimedE, … with certified deletion { }

Privately-Verifiable Deletion

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

X = your favorite cryptographic primitive

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

• any OWF (with a classical public-key)

X = your favorite cryptographic primitive

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

• any OWF (with a classical public-key)

• any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

• any OWF (with a classical public-key)

• any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Concurrent Work [KNY23]

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

• any OWF (with a classical public-key)

• any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Concurrent Work [KNY23]

• Similar (but not identical!) compiler
from OWF

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22]
[Poremba22] [BK23] [AKL23] …

Publicly-Verifiable Deletion

• [BGGKMRR23] from obfuscation

• [BKP23] from almost-regular OWF

Our Results

A general compiler for X with certified deletion
assuming:

• any OWF (with a classical public-key)

• any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Concurrent Work [KNY23]

• Similar (but not identical!) compiler
from OWF

• Minimality theorem from hard quantum
planted problems for NP

Our Compiler

Our Compiler

𝗏𝗄 = y0, y1

Our Compiler

𝗏𝗄 = y0, y1

|𝖼𝗍 > = 𝖤𝗇𝖼(x0 ⊕ x1) and 1

2
(|x0 > + (−1)𝗆𝗌𝗀 |x1 >)

Our Compiler

𝗏𝗄 = y0, y1

|𝖼𝗍 > = 𝖤𝗇𝖼(x0 ⊕ x1) and 1

2
(|x0 > + (−1)𝗆𝗌𝗀 |x1 >)

• Decrypt: Measure in the Hadamard basis and decrypt the classical cipher

Our Compiler

𝗏𝗄 = y0, y1

|𝖼𝗍 > = 𝖤𝗇𝖼(x0 ⊕ x1) and 1

2
(|x0 > + (−1)𝗆𝗌𝗀 |x1 >)

• Decrypt: Measure in the Hadamard basis and decrypt the classical cipher

• Delete: Measure in the comp. basis and check if 𝖮𝖶𝖥(xb) = yb

Our Compiler

Technique inspired by recent works on Quantum PKE [BGHMSVW] [HKNY23] [MW23]

𝗏𝗄 = y0, y1

|𝖼𝗍 > = 𝖤𝗇𝖼(x0 ⊕ x1) and 1

2
(|x0 > + (−1)𝗆𝗌𝗀 |x1 >)

• Decrypt: Measure in the Hadamard basis and decrypt the classical cipher

• Delete: Measure in the comp. basis and check if 𝖮𝖶𝖥(xb) = yb

Main Theorem

}
b = 0

1

2
(|x0 > + |x1 >)

𝖤𝗇𝖼(x0 ⊕ x1){𝒜

x* : 𝖮𝖶𝖥(x*) = y0 OR 𝖮𝖶𝖥(x*) = y1

(y0, y1) }
b = 1

1

2
(|x0 > − |x1 >)

𝖤𝗇𝖼(x0 ⊕ x1){𝒜

x* : 𝖮𝖶𝖥(x*) = y0 OR 𝖮𝖶𝖥(x*) = y1

(y0, y1)

Main Theorem

Claim: TD(out0, out1) = negl(𝜆)

}
b = 0

1

2
(|x0 > + |x1 >)

𝖤𝗇𝖼(x0 ⊕ x1){𝒜

x* : 𝖮𝖶𝖥(x*) = y0 OR 𝖮𝖶𝖥(x*) = y1

(y0, y1) }
b = 1

1

2
(|x0 > − |x1 >)

𝖤𝗇𝖼(x0 ⊕ x1){𝒜

x* : 𝖮𝖶𝖥(x*) = y0 OR 𝖮𝖶𝖥(x*) = y1

(y0, y1)

Proof Sketch

• Step I: Delay the choice of the bit

• Step II: Measure the first register in the Hadamard basis, before measuring c

Proof Sketch

• Step I: Delay the choice of the bit

• Step II: Measure the first register in the Hadamard basis, before measuring c

1
2 ∑

c

|c > (|x0 > + (−1)c |x1 >)

Proof Sketch

• Step I: Delay the choice of the bit

• Step II: Measure the first register in the Hadamard basis, before measuring c

1
2 ∑

c

|c > (|x0 > + (−1)c |x1 >)

Success probability = 1/2

Proof Sketch

• Step I: Delay the choice of the bit

• Step II: Measure the first register in the Hadamard basis, before measuring c

1
2 ∑

c

|c > (|x0 > + (−1)c |x1 >)

Success probability = 1/2

≈c (by semantic security)

Summary

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

• Open problems:

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

• Open problems:

• Construction using product states?

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

• Open problems:

• Construction using product states?

• Even weaker assumptions?

Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

• Open problems:

• Construction using product states?

• Even weaker assumptions?

• More crypto with certified deletion?

