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• Similar (but not identical!) compiler 
from OWF

• Minimality theorem from hard quantum 
planted problems for NP
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Our Compiler

Technique inspired by recent works on Quantum PKE [BGHMSVW] [HKNY23] [MW23]
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Proof Sketch

• Step I: Delay the choice of the bit


• Step II: Measure the first register in the Hadamard basis, before measuring c

1
2 ∑

c

|c > ( |x0 > + (−1)c |x1 > )

Success probability = 1/2

≈c (by semantic security)
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Summary

• We have X with certified deletion, assuming X and OWF (or OWSG)

• X = {Commitments, PKE, ABE, FHE…}

• Open problems:

• Construction using product states?

• Even weaker assumptions?

• More crypto with certified deletion?


