Weakening Assumptions for Publicly-Verifiable Deletion

James Bartusek, Dakshita Khurana, Giulio Malavolta, Alexander Poremba, Michael Walter

How to Delete Data

- Classically: Possible if the server is honest

How to Delete Data

- Classically: Possible if the server is honest
- Quantumly: Possible if the server is malicious but computationally bounded

How to Delete Data

- Classically: Possible if the server is honest
- Quantumly: Possible if the server is malicious but computationally bounded
$\{$ Commitments, SKE, PKE, ABE, WE, (Q)FHE, TimedE, ...\} with certified deletion
! !

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Privately-Verifiable Deletion

Publicly-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Publicly-Verifiable Deletion

- [BGGKMRR23] from obfuscation

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Publicly-Verifiable Deletion

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23] ...

Publicly-Verifiable Deletion

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

Our Results

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:
$\mathrm{X}=$ your favorite cryptographic primitive

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:

- any OWF (with a classical public-key)
$\mathrm{X}=$ your favorite cryptographic primitive

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:

- any OWF (with a classical public-key)
- any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Publicly-Verifiable Deletion

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:

- any OWF (with a classical public-key)
- any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

Publicly-Verifiable Deletion

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

Concurrent Work [KNY23]

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:

- any OWF (with a classical public-key)
- any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

Concurrent Work [KNY23]

- Similar (but not identica!!) compiler from OWF

Privately-Verifiable Deletion

[Unruh13] [BI20] [HMNY21] [HMNY22] [Poremba22] [BK23] [AKL23]

Our Results

A general compiler for X with certified deletion assuming:

- any OWF (with a classical public-key)
- any OWSG (with a quantum public-key)

X = your favorite cryptographic primitive

- [BGGKMRR23] from obfuscation
- [BKP23] from almost-regular OWF

Concurrent Work [KNY23]

- Similar (but not identica!!) compiler from OWF
- Minimality theorem from hard quantum planted problems for NP

Our Compiler

Our Compiler

$$
\mathrm{vk}=y_{0}, y_{1}
$$

Our Compiler

$$
\mathrm{vk}=y_{0}, y_{1}
$$

$$
\mid \operatorname{ct}>=\operatorname{Enc}\left(x_{0} \oplus x_{1}\right) \quad \text { and } \quad \frac{1}{\sqrt{2}}\left(\left|x_{0}>+(-1)^{\mathrm{msg}}\right| x_{1}>\right)
$$

Our Compiler

$$
\begin{aligned}
& \mathrm{vk}=y_{0}, y_{1} \\
& \mid \mathrm{ct}>=\operatorname{Enc}\left(x_{0} \oplus x_{1}\right) \quad \text { and } \quad \frac{1}{\sqrt{2}}\left(\left|x_{0}>+(-1)^{\mathrm{msg}}\right| x_{1}>\right)
\end{aligned}
$$

- Decrypt: Measure in the Hadamard basis and decrypt the classical cipher

Our Compiler

$$
\begin{aligned}
& \mathrm{vk}=y_{0}, y_{1} \\
& \mid \mathrm{ct}>=\operatorname{Enc}\left(x_{0} \oplus x_{1}\right) \quad \text { and } \quad \frac{1}{\sqrt{2}}\left(\left|x_{0}>+(-1)^{\mathrm{msg}}\right| x_{1}>\right)
\end{aligned}
$$

- Decrypt: Measure in the Hadamard basis and decrypt the classical cipher
- Delete: Measure in the comp. basis and check if $\operatorname{OWF}\left(x_{b}\right)=y_{b}$

Our Compiler

$$
\begin{aligned}
& \mathrm{vk}=y_{0}, y_{1} \\
& \mid \mathrm{ct}>=\operatorname{Enc}\left(x_{0} \oplus x_{1}\right) \quad \text { and } \quad \frac{1}{\sqrt{2}}\left(\left|x_{0}>+(-1)^{\mathrm{msg}}\right| x_{1}>\right)
\end{aligned}
$$

- Decrypt: Measure in the Hadamard basis and decrypt the classical cipher
- Delete: Measure in the comp. basis and check if $\operatorname{OWF}\left(x_{b}\right)=y_{b}$

Main Theorem

$$
\begin{gathered}
\mathrm{b}=0 \\
\mathscr{\downarrow}\left\{\begin{array}{c}
\left(y_{0}, y_{1}\right) \\
\frac{1}{\sqrt{2}}\left(\left|x_{0}>+\right| x_{1}>\right)
\end{array}\right\} \\
\downarrow \\
x^{*}: \operatorname{OWF}\left(x_{0} \oplus x_{1}\right) \\
\left.\frac{1}{*}\right)=y_{0} \operatorname{OR} \operatorname{OWF}\left(x^{*}\right)=y_{1}
\end{gathered}
$$

$$
\begin{aligned}
& b=1 \\
& \mathscr{A}\left\{\sqrt{\sqrt{8}\left(x_{0}\right)}\right. \\
& x^{*}: \operatorname{OWF}\left(x^{*}\right)=y_{0} \operatorname{OROWF}\left(x^{*}\right)=y_{1}
\end{aligned}
$$

Main Theorem

$\mathrm{b}=0$
$\left\{\begin{array}{c}\left(y_{0}, y_{1}\right) \\ \frac{1}{\sqrt{2}}\left(\left|x_{0}>+\right| x_{1}>\right)\end{array}\right\}$
$x^{*}: \operatorname{OWF}\left(x_{0} \oplus x_{1}\right)$

$$
b=0
$$

$$
b=1
$$

$$
\mathscr{\mathscr { Q }}\left\{\begin{array}{ll}
\left(y_{0}, y_{1}\right) & \operatorname{Enc}\left(x_{0} \oplus x_{1}\right) \\
\frac{1}{\sqrt{2}}\left(\left|x_{0}>+\right| x_{1}>\right)
\end{array}\right\}
$$

$$
\mathscr{\oiiint}\left\{\begin{array}{l}
\left(y_{0}, y_{1}\right) \\
\frac{1}{\sqrt{2}}\left(\left|x_{0}>-\right| x_{1}>\right)
\end{array}\right\}
$$

$$
x^{*}: \operatorname{OWF}\left(x^{*}\right)=y_{0} \operatorname{OROWF}\left(x^{*}\right)=y_{1}
$$

Claim: $\operatorname{TD}\left(\right.$ out $_{0}$, out $\left._{1}\right)=\operatorname{negl}(\lambda)$

Proof Sketch

- Step I: Delay the choice of the bit
- Step II: Measure the first register in the Hadamard basis, before measuring c

Proof Sketch

- Step I: Delay the choice of the bit $\left.\frac{1}{2} \sum_{c} \right\rvert\, c>\left(\left|x_{0}>+(-1)^{c}\right| x_{1}>\right)$
- Step II: Measure the first register in the Hadamard basis, before measuring c

Proof Sketch

- Step I: Delay the choice of the bit $\frac{1}{2} \sum_{c}\left|c>\left(\left|x_{0}\right\rangle+(-1)^{c} \mid x_{1}>\right)\right.$
- Step II: Measure the first register in the Hadamard basis, before measuring c

$$
\text { Success probability = } 1 / 2
$$

Proof Sketch

- Step I: Delay the choice of the bit $\frac{1}{2} \sum_{c}\left|c>\left(\left|x_{0}\right\rangle+(-1)^{c} \mid x_{1}>\right)\right.$ \approx_{c} (by semantic security)
- Step II: Measure the first register in the Hadamard basis, before measuring c

$$
\text { Success probability = } 1 / 2
$$

Summary

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)
- $\mathrm{X}=$ \{Commitments, PKE, ABE, FHE...\}

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)
- $\mathrm{X}=$ \{Commitments, PKE, ABE, FHE...\}
- Open problems:

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)
- $\mathrm{X}=\{$ Commitments, PKE, ABE, FHE... $\}$
- Open problems:
- Construction using product states?

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)
- $\mathrm{X}=$ = Commitments, PKE, ABE, FHE...\}
- Open problems:
- Construction using product states?
- Even weaker assumptions?

Summary

- We have X with certified deletion, assuming X and OWF (or OWSG)
- $\mathrm{X}=$ = Commitments, PKE, ABE, FHE...\}
- Open problems:
- Construction using product states?
- Even weaker assumptions?
- More crypto with certified deletion?

