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• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations
– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

• Verification efficiency desirable, especially in 2-phase 
applications:
– “Proving phase” (offline, can be executed in parallel to external 

application\execution)

– “Verification phase” (online)

• Our goal: verification-efficient framing free dZKs

Why Distributed ZK (dZK)?
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• Verification-efficient dZK for NP, but prover can be framed [BBCGI19]

• Generic MPC protocols [BGW88,CCD88] give dZK

– Even with 𝑂 1 rounds [IK02,ABT19,ACGJ18,ACGJ19] and tight thresholds and 
round complexities [AKP20a,AKP20b]

– Not verification-efficient!
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– Constructions of [BBCGI19] based on fully-linear IOPs

• Instantiations (assuming ideal coin tossing, Ω 𝑘 corruptions):

• Applications: aggregate statistics, VSS, (reusable) certifiable VSS, 
proving honest behavior
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Pairwise consistency ⇒ global consistency ⇒ soundness [IKOS07]
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• Instantiations (assuming ideal coin toss, Ω 𝑘 corruptions):

• Applications: we give dZK-based:

– VSS, Certifiable VSS + reusable

– Framing-free proofs on distributed data (secure aggregation)

– Semi-honest to malicious compiler: with identifiable abort 

• Framing-free property crucial for these applications
Thank you!

# Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠 , 𝑠 statistical sec param
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