
Your Reputation's Safe with Me:
Framing-Free Distributed
Zero-Knowledge Proofs

Carmit Hazay Muthuramakrishnan Venkitasubramaniam Mor Weiss

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

𝑃

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

𝑃

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

𝑃

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

𝑃

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

Coloring?
Rest of graph?

𝑃

Framing-Free Distributed ZK Proofs

𝑉5

𝑉4
𝑉3

𝑉2

𝑉1

𝑃

Why Distributed ZK (dZK)?
• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

I behaved
honestly!

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

I behaved
honestly!

Messages I sent are consistent with
messages I received + 𝑥1 and

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

I behaved
honestly!

Messages I sent are consistent with
messages I received + 𝑥1 and

NP witness

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

I behaved
honestly!

Messages I sent are consistent with
messages I received + 𝑥1 and

Input statement distributed
between other parties

NP witness

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

Why Distributed ZK (dZK)?

𝑓 𝑥1, … , 𝑥5

𝑥1

𝑥4𝑥3

𝑥2 𝑥5
𝑥5, , ……

𝑥1, , ……

𝑥4, , …𝑥3, , ……

𝑥2, , ……

…

I behaved
honestly!

Messages I sent are consistent with
messages I received + 𝑥1 and

Input statement distributed
between other parties

NP witness

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations

– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

Why Distributed ZK (dZK)?

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations

– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

Why Distributed ZK (dZK)?

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations
– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

• Verification efficiency desirable, especially in 2-phase
applications:
– “Proving phase” (offline, can be executed in parallel to external

application\execution)

– “Verification phase” (online)

Why Distributed ZK (dZK)?

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations
– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

• Verification efficiency desirable, especially in 2-phase
applications:
– “Proving phase” (offline, can be executed in parallel to external

application\execution)

– “Verification phase” (online)

Why Distributed ZK (dZK)?

𝒑𝒐𝒍𝒚 𝒌, log 𝒙 Total CC during verification phase

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations
– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

• Verification efficiency desirable, especially in 2-phase
applications:
– “Proving phase” (offline, can be executed in parallel to external

application\execution)

– “Verification phase” (online)

Why Distributed ZK (dZK)?

𝒑𝒐𝒍𝒚 𝒌, log 𝒙 Total CC during verification phase

• Many scenarios involve single prover and many verifiers

• Each verifier has only local view of statement

• Useful in many situations
– Proving honest behavior in distributed protocols

– Aggregate statistics (proofs on secret-shared data)

– Verifiable secret sharing

– …

• Framing a real concern in such scenarios

• Verification efficiency desirable, especially in 2-phase
applications:
– “Proving phase” (offline, can be executed in parallel to external

application\execution)

– “Verification phase” (online)

• Our goal: verification-efficient framing free dZKs

Why Distributed ZK (dZK)?

Distributed ZK Proofs: Previous Works
• Many different models

– Verifiers colluding with prover, computational powers of corrupted parties,
who knows input statement, … [ABD91,CF02,GIKR02,GO07,CBM15,CB17,
BBCGI19,AKP20a,BBGIN20,BGIN21,BJOSS22,WY22, AKP22]

Distributed ZK Proofs: Previous Works
• Many different models

– Verifiers colluding with prover, computational powers of corrupted parties,
who knows input statement, … [ABD91,CF02,GIKR02,GO07,CBM15,CB17,
BBCGI19,AKP20a,BBGIN20,BGIN21,BJOSS22,WY22, AKP22]

– Related notions (e.g, VRS [GIKR02,AKP20a,AKP22])

Distributed ZK Proofs: Previous Works
• Many different models

– Verifiers colluding with prover, computational powers of corrupted parties,
who knows input statement, … [ABD91,CF02,GIKR02,GO07,CBM15,CB17,
BBCGI19,AKP20a,BBGIN20,BGIN21,BJOSS22,WY22, AKP22]

– Related notions (e.g, VRS [GIKR02,AKP20a,AKP22])

– Most related model [BBCGI19]

• Input statement 𝑥 distributed between verifiers

• Soundness against prover colluding with verifiers

• Information-theoretic security

Distributed ZK Proofs: Previous Works
• Many different models

– Verifiers colluding with prover, computational powers of corrupted parties,
who knows input statement, … [ABD91,CF02,GIKR02,GO07,CBM15,CB17,
BBCGI19,AKP20a,BBGIN20,BGIN21,BJOSS22,WY22, AKP22]

– Related notions (e.g, VRS [GIKR02,AKP20a,AKP22])

– Most related model [BBCGI19]

• Input statement 𝑥 distributed between verifiers

• Soundness against prover colluding with verifiers

• Information-theoretic security

– Constructions [ACF02,GIKR02,GO14,BBCGI19,AKP20a,BJOSS22,WY22,AKP22]

• Verification-efficient dZK for NP, but prover can be framed [BBCGI19]

Distributed ZK Proofs: Previous Works
• Many different models

– Verifiers colluding with prover, computational powers of corrupted parties,
who knows input statement, … [ABD91,CF02,GIKR02,GO07,CBM15,CB17,
BBCGI19,AKP20a,BBGIN20,BGIN21,BJOSS22,WY22, AKP22]

– Related notions (e.g, VRS [GIKR02,AKP20a,AKP22])

– Most related model [BBCGI19]

• Input statement 𝑥 distributed between verifiers

• Soundness against prover colluding with verifiers

• Information-theoretic security

– Constructions [ACF02,GIKR02,GO14,BBCGI19,AKP20a,BJOSS22,WY22,AKP22]

• Verification-efficient dZK for NP, but prover can be framed [BBCGI19]

• Generic MPC protocols [BGW88,CCD88] give dZK

– Even with 𝑂 1 rounds [IK02,ABT19,ACGJ18,ACGJ19] and tight thresholds and
round complexities [AKP20a,AKP20b]

– Not verification-efficient!

Our Contribution
• First verification-efficient “framing-free” dZK for NP

– 𝑘 verifiers, 𝑡 <
𝑘−2

6
corruptions

– Or 𝑡 <
𝑘

2
without framing-free (matches dZKs of [BBCGI19])

Our Contribution
• First verification-efficient “framing-free” dZK for NP

– 𝑘 verifiers, 𝑡 <
𝑘−2

6
corruptions

– Or 𝑡 <
𝑘

2
without framing-free (matches dZKs of [BBCGI19])

• New approach to dZK design (even without framing-free)

– Based on “MPC in the head”

• Using new analysis for “MPC in the head” in distributed setting
(fundamentally different from the analysis in [AKP22])

– Constructions of [BBCGI19] based on fully-linear IOPs

Our Contribution
• First verification-efficient “framing-free” dZK for NP

– 𝑘 verifiers, 𝑡 <
𝑘−2

6
corruptions

– Or 𝑡 <
𝑘

2
without framing-free (matches dZKs of [BBCGI19])

• New approach to dZK design (even without framing-free)
– Based on “MPC in the head”

• Using new analysis for “MPC in the head” in distributed setting
(fundamentally different from the analysis in [AKP22])

– Constructions of [BBCGI19] based on fully-linear IOPs

• Instantiations (assuming ideal coin tossing, Ω 𝑘 corruptions):

Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠
(𝑠 statistical security param)

Our Contribution
• First verification-efficient “framing-free” dZK for NP

– 𝑘 verifiers, 𝑡 <
𝑘−2

6
corruptions

– Or 𝑡 <
𝑘

2
without framing-free (matches dZKs of [BBCGI19])

• New approach to dZK design (even without framing-free)
– Based on “MPC in the head”

• Using new analysis for “MPC in the head” in distributed setting
(fundamentally different from the analysis in [AKP22])

– Constructions of [BBCGI19] based on fully-linear IOPs

• Instantiations (assuming ideal coin tossing, Ω 𝑘 corruptions):

• Applications: aggregate statistics, VSS, (reusable) certifiable VSS,
proving honest behavior

Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠
(𝑠 statistical security param)

Highlights of
Our dZK Construction

Proofs from “MPC in the Head”

Proofs from “MPC in the Head”

Proofs from “MPC in the Head”

Proofs from “MPC in the Head”

Pairwise consistency ⇒ global consistency ⇒ soundness [IKOS07]

Prover Zone

dZK from “MPC in the Head” (Warmup)

Verification Zone

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

Prover Zone

dZK from “MPC in the Head” (Warmup)

Verification Zone

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

Prover Zone

dZK from “MPC in the Head” (Warmup)

Verification Zone

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

Prover Zone

dZK from “MPC in the Head” (Warmup)

Verification Zone

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

Prover Zone

dZK from “MPC in the Head” (Warmup)

Verification Zone

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4
Each 𝑉𝑖 checks:

• Local consistency: input 𝑥 𝑖 and output 1
• Pairwise consistency with every 𝑉𝑗
Accept if no verifier b\casts complaint

Getting Verification Efficiency

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4
Each 𝑉𝑖 checks:

• Local consistency: input 𝑥 𝑖 and output 1
• Pairwise consistency with every 𝑉𝑗
Accept if no verifier b\casts complaint

Getting Verification Efficiency

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

• To get verification efficiency: compress communication with
information-theoretic MACs
– Verifiers exchange only tags

– All MACs generated using one random coin (from the oracle)

Each 𝑉𝑖 checks:

• Local consistency: input 𝑥 𝑖 and output 1
• Pairwise consistency with every 𝑉𝑗
Accept if no verifier b\casts complaint

Getting Verification Efficiency

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4
Each 𝑉𝑖 checks:
• Local consistency
• Pairwise consistency with every 𝑉𝑗 using tags

Accept if no verifier b\casts complaint

𝑡1,2 =
? 𝑡2,1

• To get verification efficiency: compress communication with
information-theoretic MACs
– Verifiers exchange only tags

– All MACs generated using one random coin (from the oracle)

𝑟

Getting Verification Efficiency

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4
Each 𝑉𝑖 checks:
• Local consistency
• Pairwise consistency with every 𝑉𝑗 using tags

Accept if no verifier b\casts complaint

𝑡1,2 =
? 𝑡2,1

• To get verification efficiency: compress communication with
information-theoretic MACs
– Verifiers exchange only tags

– All MACs generated using one random coin (from the oracle)

• Matches dZK of [BBCGI19]

𝑟

Each 𝑉𝑖 checks:
• Local consistency
• Pairwise consistency with every 𝑉𝑗 using tags

Accept if no verifier b\casts complaint

Getting Framing Free

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

𝑡1,2 =
? 𝑡2,1

Each 𝑉𝑖 checks:
• Local consistency
• Pairwise consistency with every 𝑉𝑗 using tags

Accept if no verifier b\casts complaint

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

Each 𝑉𝑖 checks:
• Local consistency
• Pairwise consistency with every 𝑉𝑗 using tags

Accept if no verifier b\casts complaint

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

𝑡1,2, 𝑡1,3, 𝑡1,4
𝑣𝑖𝑒𝑤4 consistent?

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

𝑡1,2, 𝑡1,3, 𝑡1,4
𝑣𝑖𝑒𝑤4 consistent?• 𝐶1 := set of verifiers claiming local inconsistency

• 𝐶2 := set of verifiers b\casting incorrect messages (𝑃 computes and b\casts)
• 𝑉𝑖 accepts if 𝐶1 ∪ 𝐶2 ≤ 𝑡, otherwise rejects

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

• This is not ZK!

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

𝑡1,2, 𝑡1,3, 𝑡1,4
𝑣𝑖𝑒𝑤4 consistent?• 𝐶1 := set of verifiers claiming local inconsistency

• 𝐶2 := set of verifiers b\casting incorrect messages (𝑃 computes and b\casts)
• 𝑉𝑖 accepts if 𝐶1 ∪ 𝐶2 ≤ 𝑡, otherwise rejects

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

• This is not ZK!

• To preserve ZK: masks tags with unique random masks,
provided by prover

– Unique mask for every pair 𝑉𝑖 , 𝑉𝑗

– Preserves soundness: masks chosen before random coin

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟

𝑡1,2, 𝑡1,3, 𝑡1,4
𝑣𝑖𝑒𝑤4 consistent?• 𝐶1 := set of verifiers claiming local inconsistency

• 𝐶2 := set of verifiers b\casting incorrect messages (𝑃 computes and b\casts)
• 𝑉𝑖 accepts if 𝐶1 ∪ 𝐶2 ≤ 𝑡, otherwise rejects

Getting Framing Free
• To get framing free: All values b\casted, no P2P communication

• This is not ZK!

• To preserve ZK: masks tags with unique random masks,
provided by prover

– Unique mask for every pair 𝑉𝑖 , 𝑉𝑗

– Preserves soundness: masks chosen before random coin

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4
• 𝐶1 := set of verifiers claiming local inconsistency
• 𝐶2 := set of verifiers b\casting incorrect messages (𝑃 computes and b\casts)
• 𝑉𝑖 accepts if 𝐶1 ∪ 𝐶2 ≤ 𝑡, otherwise rejects

𝑟

𝑟1,2 𝑟1,3 𝑟1,4 𝑟1,2 𝑟2,3 𝑟2,4 𝑟1,3 𝑟2,3 𝑟3,4 𝑟1,4 𝑟2,4 𝑟3,4

𝑡1,2 + 𝑟1,2, 𝑡1,3 + 𝑟1,3, 𝑡1,4 + 𝑟1,4
𝑣𝑖𝑒𝑤4 consistent?

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

Our dZK Proof (Summary)

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟1,2 𝑟1,3 𝑟1,4
𝑟1,4 𝑟2,4 𝑟3,4

Our dZK Proof (Summary)

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟1,2 𝑟1,3 𝑟1,4
𝑟1,4 𝑟2,4 𝑟3,4

Our dZK Proof (Summary)

𝑟

𝑥 4

𝑉1
𝑥 1

𝑉2
𝑥 2

𝑉3
𝑥 3

𝑉4

𝑟1,2 𝑟1,3 𝑟1,4
𝑟1,4 𝑟2,4 𝑟3,4

𝑡1,2 + 𝑟1,2
𝑡1,3 + 𝑟1,3
𝑡1,4 + 𝑟1,4

𝑣𝑖𝑒𝑤1 consistent?

𝑡2,1 + 𝑟1,2
𝑡2,3 + 𝑟2,3
𝑡2,4 + 𝑟2,4

𝑣𝑖𝑒𝑤2 consistent?

𝑡3,1 + 𝑟1,3
𝑡3,2 + 𝑟2,3
𝑡3,4 + 𝑟3,4

𝑣𝑖𝑒𝑤3 consistent?

𝑡4,1 + 𝑟1,4
𝑡4,2 + 𝑟2,4
𝑡4,3 + 𝑟3,4

𝑣𝑖𝑒𝑤4 consistent?

Our dZK Proof (Summary)

𝑟

MPC in the Head: Distributed vs. 2-Party

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed 2-Party [IKOS07]

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed 2-Party [IKOS07]

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed 2-Party [IKOS07]

MPC parties correspond to verifiers MPC parties are virtual

Entire execution trace checked Partial execution trace checked

𝑛𝑒𝑔𝑙 𝑠 error, independent of
MPC parties

𝑛𝑒𝑔𝑙 𝑠 error with 𝑠 MPC parties

MPC in the Head: Distributed vs. 2-Party
Distributed 2-Party [IKOS07]

Summary
• We saw verification-efficient framing-free dZK proofs

– Based on a distributed version of “MPC in the head”

Summary
• We saw verification-efficient framing-free dZK proofs

– Based on a distributed version of “MPC in the head”

• More in the paper… (ePrint 2022/1523)

Summary
• We saw verification-efficient framing-free dZK proofs

– Based on a distributed version of “MPC in the head”

• More in the paper… (ePrint 2022/1523)

• Instantiations (assuming ideal coin toss, Ω 𝑘 corruptions):
Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠 , 𝑠 statistical sec param

Summary
• We saw verification-efficient framing-free dZK proofs

– Based on a distributed version of “MPC in the head”

• More in the paper… (ePrint 2022/1523)

• Instantiations (assuming ideal coin toss, Ω 𝑘 corruptions):

• Applications: we give dZK-based:

– VSS, Certifiable VSS + reusable

– Framing-free proofs on distributed data (secure aggregation)

– Semi-honest to malicious compiler: with identifiable abort

• Framing-free property crucial for these applications

Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠 , 𝑠 statistical sec param

Summary
• We saw verification-efficient framing-free dZK proofs

– Based on a distributed version of “MPC in the head”

• More in the paper… (ePrint 2022/1523)

• Instantiations (assuming ideal coin toss, Ω 𝑘 corruptions):

• Applications: we give dZK-based:

– VSS, Certifiable VSS + reusable

– Framing-free proofs on distributed data (secure aggregation)

– Semi-honest to malicious compiler: with identifiable abort

• Framing-free property crucial for these applications
Thank you!

Rounds Total proof length Verification CC

3 𝑂 log 𝑘 ⋅ log 𝐶 ⋅ 𝐶 𝑂 𝑘2

4 𝑂 𝐶 𝑂 𝑘2 + 𝑠 , 𝑠 statistical sec param

	Slide 1: Your Reputation's Safe with Me: Framing-Free Distributed Zero-Knowledge Proofs
	Slide 2: Framing-Free Distributed ZK Proofs
	Slide 3: Framing-Free Distributed ZK Proofs
	Slide 4: Framing-Free Distributed ZK Proofs
	Slide 5: Framing-Free Distributed ZK Proofs
	Slide 6: Framing-Free Distributed ZK Proofs
	Slide 7: Framing-Free Distributed ZK Proofs
	Slide 8: Why Distributed ZK (dZK)?
	Slide 9: Why Distributed ZK (dZK)?
	Slide 10: Why Distributed ZK (dZK)?
	Slide 11: Why Distributed ZK (dZK)?
	Slide 12: Why Distributed ZK (dZK)?
	Slide 13: Why Distributed ZK (dZK)?
	Slide 14: Why Distributed ZK (dZK)?
	Slide 15: Why Distributed ZK (dZK)?
	Slide 16: Why Distributed ZK (dZK)?
	Slide 17: Why Distributed ZK (dZK)?
	Slide 18: Why Distributed ZK (dZK)?
	Slide 19: Why Distributed ZK (dZK)?
	Slide 20: Why Distributed ZK (dZK)?
	Slide 21: Distributed ZK Proofs: Previous Works
	Slide 22: Distributed ZK Proofs: Previous Works
	Slide 23: Distributed ZK Proofs: Previous Works
	Slide 24: Distributed ZK Proofs: Previous Works
	Slide 25: Distributed ZK Proofs: Previous Works
	Slide 26: Our Contribution
	Slide 27: Our Contribution
	Slide 28: Our Contribution
	Slide 29: Our Contribution
	Slide 30: Highlights of Our dZK Construction
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: dZK from “MPC in the Head” (Warmup)
	Slide 36: dZK from “MPC in the Head” (Warmup)
	Slide 37: dZK from “MPC in the Head” (Warmup)
	Slide 38: dZK from “MPC in the Head” (Warmup)
	Slide 39: dZK from “MPC in the Head” (Warmup)
	Slide 40: Getting Verification Efficiency
	Slide 41: Getting Verification Efficiency
	Slide 42: Getting Verification Efficiency
	Slide 43: Getting Verification Efficiency
	Slide 44: Getting Framing Free
	Slide 45: Getting Framing Free
	Slide 46: Getting Framing Free
	Slide 47: Getting Framing Free
	Slide 48: Getting Framing Free
	Slide 49: Getting Framing Free
	Slide 50: Getting Framing Free
	Slide 51: Our dZK Proof (Summary)
	Slide 52: Our dZK Proof (Summary)
	Slide 53: Our dZK Proof (Summary)
	Slide 54: Our dZK Proof (Summary)
	Slide 55: MPC in the Head: Distributed vs. 2-Party
	Slide 56: MPC in the Head: Distributed vs. 2-Party
	Slide 57: MPC in the Head: Distributed vs. 2-Party
	Slide 58: MPC in the Head: Distributed vs. 2-Party
	Slide 59: MPC in the Head: Distributed vs. 2-Party
	Slide 60: MPC in the Head: Distributed vs. 2-Party
	Slide 61: MPC in the Head: Distributed vs. 2-Party
	Slide 62: MPC in the Head: Distributed vs. 2-Party
	Slide 63: Summary
	Slide 64: Summary
	Slide 65: Summary
	Slide 66: Summary
	Slide 67: Summary

