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Motivation

I (EC)DSA signatures is a standardized signature scheme and used everywhere
I SSL/TLS
I Blockchains (Bitcoin, Ethereum, . . . )
I JSON Web Tokens (JWT)
I . . .

I Comparatively few security results

I Existing results require strong idealization
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GenDSA [FKP16]

Let G = (G, p, g) be a group

and f : G→ Zp a “conversion function”.

Gen:

x $← Z∗p; X = g x

vk = X ; sk = x
return (vk, sk)

Sign(sk = x ,m):

r $← Z∗p;R = g r

h = H(m);
s = h+x·t

r

if (t ?= 0) ∨ (s ?= 0) then
return ⊥

return (s, t)

Ver(vk = X ,m, σ = (s, t)):

if (t ?= 0) ∨ (s ?= 0) then
return ⊥

h = H(m)
t ′ = f

((
ghX t

) 1
s

)
return t

?= t ′
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The Conversion Function

I Conversion function is integral to security of (EC)DSA. . .

I . . . yet very simple in practice:

I DSA: Interprets bit representation of group element as integer (mod p)
I ECDSA: Interprets bit representation of x-coordinate of curve point as integer (mod p)

I Completely breaks algebraic meaning

I Has no “unpredictability”

Where is the problem?
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The Problem

I Paillier & Vergnaud [PV05]: No security proof in standard model(∗)

I Three parts to idealize:

I hash function H as RO [FKP17]
I group G as generic group [GS21]
I conversion function f with programmable BRO [FKP16]
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Modeling the conversion function [FKP16]

I f : G→ Zp

, f = ψ ◦ Π ◦ ϕ

G

{0, 1}L [0:2L − 1]

Zp

f

ϕ Π ψ

I ϕ: 2-to-1 function
I Π: bijection
I ψ: arbitrary
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Results

DLog UF-NMA UF-CMA n-UF-CMA

6
f = non-progr., rewind.

OR f = progr., non-rewind.

6
f = non-progr.,

rewind.

6
f = non-progr., rewind., loss < n

OR f = progr., non-rewind., loss < n

f = progr., rewind. [FKP16] f = progr., non-rewind. [FKP16] f = arb., loss = n [GMS02]
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Meta Reduction

I “Reduction against the reduction”

R A

O

P

M

P′

R A

Ō

P

M

P′
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Simulating an Adversary

I Problem 1: Simulate successfull adversary without secret key

I Solution: Use the assumption attacked by the meta-reduction
I Free-Base One-More Discrete Logarithm assumption (FBOMDL)
I Provides access to a DLog oracle (relative to a chosen base element)
I only usable if we get more challenges

I Problem 2: How to extract all solutions?

I Solution: AGM and clever simulation of (Π̄, Π̄−1)
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Interpretation

I Is ECDSA now broken?

I No, but the proofs require strong, potentially unrealistic assumptions

I Isn’t the q-FBOMDL assumption really strong?

I Yes, but only used for meta-reduction

I Can we get around these problems?

I Find non-algebraic/non-black-box reductions
I Use stronger assumptions
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Thank you!

Eprint: ia.cr/2023/914
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