Limits in the Provable Security of ECDSA Signatures

Dominik Hartmann, Eike Kiltz

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

Motivation

- (EC)DSA signatures is a standardized signature scheme and used everywhere
- SSL/TLS
- Blockchains (Bitcoin, Ethereum, ...)
- JSON Web Tokens (JWT)

Motivation

- (EC)DSA signatures is a standardized signature scheme and used everywhere
- SSL/TLS
- Blockchains (Bitcoin, Ethereum, ...)
- JSON Web Tokens (JWT)
- Comparatively few security results
- Existing results require strong idealization

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group

Gen:

$$
\begin{aligned}
& x{ }^{\varsigma} \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group

Gen:

$$
\begin{aligned}
& x \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

Sign(sk $=x, m$):

$$
\begin{aligned}
& r \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*} ; R=g^{r} \\
& h=H(m) \text {; }
\end{aligned}
$$

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group and $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ a "conversion function".

Gen:

$$
\begin{aligned}
& x{ }^{〔} \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{Sign}(\mathrm{sk}=x, m):}{\quad r \stackrel{s}{*} \mathbb{Z}_{p}^{*} ; R=g^{r}} \\
& \quad h=H(m) ; t=f(R)
\end{aligned}
$$

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group and $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ a "conversion function".

Gen:

$$
\begin{aligned}
& x \leftarrow^{\S} \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sign(sk }=x, m) \text { : } \\
& \quad r \mathscr{S}_{p}^{*} ; R=g^{r} \\
& h=H(m) ; t=f(R) \\
& s=\frac{h+x \cdot t}{r}
\end{aligned}
$$

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group and $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ a "conversion function".

Gen:

$$
\begin{aligned}
& x \leftarrow^{\varsigma} \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sign }(\mathrm{sk}=x, m): \\
& \hline r \&^{s} \mathbb{Z}_{p}^{*} ; R=g^{r} \\
& h=H(m) ; t=f(R) \\
& s=\frac{h+x \cdot t}{r} \\
& \text { if }(t \stackrel{?}{=} 0) \vee(s \stackrel{?}{=} 0) \text { then } \\
& \quad \text { return } \perp \\
& \text { return }(s, t)
\end{aligned}
$$

GenDSA [FKP16]

Let $\mathcal{G}=(\mathbb{G}, p, g)$ be a group and $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ a "conversion function".

Gen:

$$
\begin{aligned}
& x \aleph^{\varsigma} \mathbb{Z}_{p}^{*} ; X=g^{x} \\
& \text { vk }=X ; \text { sk }=x \\
& \text { return (vk, sk) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sign }(\mathrm{sk}=x, m): \\
& \hline r \stackrel{\wedge}{s}^{s} \mathbb{Z}_{p}^{*} ; R=g^{r} \\
& h=H(m) ; t=f(R) \\
& s=\frac{h+x \cdot t}{r} \\
& \text { if }(t \stackrel{?}{=} 0) \vee(s \stackrel{?}{=} 0) \text { then } \\
& \quad \text { return } \perp \\
& \text { return }(s, t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ver }(\mathrm{vk}=X, m, \sigma=(s, t)): \\
& \begin{array}{l}
\text { if }(t \stackrel{?}{=} 0) \vee(s \stackrel{?}{=} 0) \text { then } \\
\quad \text { return } \perp \\
h=H(m) \\
t^{\prime}=f\left(\left(g^{h} X^{t}\right)^{\frac{1}{s}}\right) \\
\text { return } t \stackrel{?}{=} t^{\prime}
\end{array}
\end{aligned}
$$

The Conversion Function

- Conversion function is integral to security of (EC)DSA...
- ... yet very simple in practice:

The Conversion Function

- Conversion function is integral to security of (EC)DSA...
- ... yet very simple in practice:
- DSA: Interprets bit representation of group element as integer $(\bmod p)$
- ECDSA: Interprets bit representation of x-coordinate of curve point as integer $(\bmod p)$

The Conversion Function

- Conversion function is integral to security of (EC)DSA...
- ... yet very simple in practice:
- DSA: Interprets bit representation of group element as integer $(\bmod p)$
- ECDSA: Interprets bit representation of x-coordinate of curve point as integer $(\bmod p)$
- Completely breaks algebraic meaning
- Has no "unpredictability"

The Conversion Function

- Conversion function is integral to security of (EC)DSA...
- ... yet very simple in practice:
- DSA: Interprets bit representation of group element as integer $(\bmod p)$
- ECDSA: Interprets bit representation of x-coordinate of curve point as integer $(\bmod p)$
- Completely breaks algebraic meaning
- Has no "unpredictability"

Where is the problem?

The Problem

- Paillier \& Vergnaud [PV05]: No security proof in standard model ${ }^{(*)}$

The Problem

- Paillier \& Vergnaud [PV05]: No security proof in standard model ${ }^{(*)}$
- Three parts to idealize:

The Problem

- Paillier \& Vergnaud [PV05]: No security proof in standard model ${ }^{(*)}$
- Three parts to idealize:
- hash function H as RO [FKP17]
- group \mathcal{G} as generic group [GS21]
- conversion function f with programmable BRO [FKP16]

The Problem

- Paillier \& Vergnaud [PV05]: No security proof in standard model ${ }^{(*)}$
- Three parts to idealize:
- hash function H as RO [FKP17]
- group \mathcal{G} as generic group [GS21]
- conversion function f with programmable BRO [FKP16]

Modeling the conversion function [FKP16]

- $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}$

Modeling the conversion function [FKP16]

- $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}, \quad f=\psi \circ \Pi \circ \varphi$

Modeling the conversion function [FKP16]

- $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}, \quad f=\psi \circ \Pi \circ \varphi$

- φ : 2-to-1 function
- Π : bijection
- ψ : arbitrary

Modeling the conversion function [FKP16]

- $f: \mathbb{G} \rightarrow \mathbb{Z}_{p}, \quad f=\psi \circ \Pi \circ \varphi$

- φ : 2-to-1 function
- : bijection \leftarrow modeled as bijective random oracle
- ψ : arbitrary

Results

Results

Results

Meta Reduction

- "Reduction against the reduction"

Meta Reduction

- "Reduction against the reduction"

Simulating an Adversary

- Problem 1: Simulate successfull adversary without secret key

Simulating an Adversary

- Problem 1: Simulate successfull adversary without secret key
- Solution: Use the assumption attacked by the meta-reduction
- Free-Base One-More Discrete Logarithm assumption (FBOMDL)
- Provides access to a DLog oracle (relative to a chosen base element)
- only usable if we get more challenges

Simulating an Adversary

- Problem 1: Simulate successfull adversary without secret key
- Solution: Use the assumption attacked by the meta-reduction
- Free-Base One-More Discrete Logarithm assumption (FBOMDL)
- Provides access to a DLog oracle (relative to a chosen base element)
- only usable if we get more challenges
- Problem 2: How to extract all solutions?

Simulating an Adversary

- Problem 1: Simulate successfull adversary without secret key
- Solution: Use the assumption attacked by the meta-reduction
- Free-Base One-More Discrete Logarithm assumption (FBOMDL)
- Provides access to a DLog oracle (relative to a chosen base element)
- only usable if we get more challenges
- Problem 2: How to extract all solutions?
- Solution: AGM and clever simulation of $\left(\bar{\Pi}, \bar{\Pi}^{-1}\right)$

Interpretation

- Is ECDSA now broken?

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions
- Isn't the q-FBOMDL assumption really strong?

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions
- Isn't the q-FBOMDL assumption really strong?
- Yes, but only used for meta-reduction

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions
- Isn't the q-FBOMDL assumption really strong?
- Yes, but only used for meta-reduction
- Can we get around these problems?

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions
- Isn't the q-FBOMDL assumption really strong?
- Yes, but only used for meta-reduction
- Can we get around these problems? Yes
- Find non-algebraic/non-black-box reductions

Interpretation

- Is ECDSA now broken?
- No, but the proofs require strong, potentially unrealistic assumptions
- Isn't the q-FBOMDL assumption really strong?
- Yes, but only used for meta-reduction
- Can we get around these problems? Yes
- Find non-algebraic/non-black-box reductions
- Use stronger assumptions

Thank you!

Eprint: ia.cr/2023/914

