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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”

Msg
l ®: N bits
o Black-box cryptanalysis:
— Exponential with N
R

Trace(Msg, o) Ctx Side-Channel Analysis:
‘ — Exponential with bit-size
— Linear with N

Trace : power, EM, acoustics, runtime, ...
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The Counter-Measure: Masking
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The Counter-Measure: Masking
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The Counter-Measure: Masking

Y (secret)
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Deep Learning (DL) for SCA

Deep Neural Network (DNN)

General way to modelize, i.e., to convert leakage into probabilities

F: 1L — P (1)
I — y=F()=Pr(Y | L=

F(I): output of a Directed Acyclic Graph (DAG) of computation:
Each node: elementary function £(-,6;)
0;: parameters fully describing f;

Shape of the DAG, nature of the classes of functions: architecture of the DNN.
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Training a DNN for Profiled SCA

Clone Device

(Open sample)
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Training a DNN for Profiled SCA

qay=c(p,k*)

Clone Device

(Open sample)
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Training a DNN for Profiled SCA

Clone Device =

(Open sample)
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Training a DNN for Profiled SCA

Clone Device

(Open sample)

Parameters 6

Loic Masure Don't Learn What You already Know 7/23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

Training a DNN for Profiled SCA

Clone Device

(Open sample)

Parameters 6

Loic Masure Don't Learn What You already Know 7/23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

Training a DNN for Profiled SCA

—
q% y=C(p, k")
k*
4
e 0%%0 - —— F(1,0) L(y,yi)
Ge o0 = -

Clone Device

(Open sample)

Parameters § «<———

L (): loss function to minimize, with gradient descent
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Deep Learning Against Masking

Training a DNN for Profiled SCA

_
q —— y=C(p,k¥)
"
V4
k= e F(L0) £y )

Clone Device

(Open sample)

Parameters § «<———

L (): loss function to minimize, with gradient descent
Uninformed adversary: no knowledge of random shares during profiling
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Training a DNN for Profiled SCA

—
ri, i>0
—_— yl = " d .
Clp, k)P, i=0
k*, /
b
— s - FL0) £0.m)
< - - 5 Y, Yi
Ll :
Clone Device =
(Open sample) : [

Parameters § «<———

L (): loss function to minimize, with gradient descent
: knowledge of random shares during profiling
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How to profile as Worst-Case Adversary?

The natural way: divide & conquer
Iy %—» — Pr(Y | L) decomposed as
collection of Pr(Y; | L;)
v @
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The natural way: divide & conquer
b %—'—> — Pr(Y | L) decomposed as
collection of Pr(Y; | L;)
— Each, modeled by my,

I %_»—> — Separately trained with £,
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How to profile as Worst-Case Adversary?

The natural way: divide & conquer
Iy %_'ﬁ — Pr(Y | L) decomposed as
E collection of Pr(Y; | L;)

— Each, modeled by my,

h %*—j — Separately trained with £,

— Then use ® to recombine
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How to profile as Uninformed Adversary”

The End-to-End Way:

I
%\ = — Pr(Y | L) directly modeled by
h %/' L mg, trained with £
' y
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Simulated Experiments

Uninformed Worst-case
2
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Figure: Learning curves: MI estimation vs. data complexity.
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What Kind of Adversary for Evaluation 7

Adversary Worst-case Uninformed
Access to shares Yes No
Knowledge of scheme Yes No

Access to shares during profiling:
Easy to reach optimal attacks v/ Too conservative X
Not realistic X

Loic Masure Don't Learn What You already Know 11 /23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

What Kind of Adversary for Evaluation 7

Adversary Worst-case Scheme-Aware Uninformed
Access to shares Yes No No
Knowledge of scheme Yes Yes No

Access to shares during profiling:
Easy to reach optimal attacks v/ Too conservative X
Not realistic X

How to leverage the knowledge of the masking scheme, without
relying on the knowledge of the shares?
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Don’t Learn what You Already Know !

Can we find a trade-off between both approaches ?

— Model still decomposed as

Iy %"_V - collection of Pr(Y; | L;)
-
v 2 —f—
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Can we find a trade-off between both approaches ?
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Don’t Learn what You Already Know !

Can we find a trade-off between both approaches ?
— Model still decomposed as

I _>._M_w collection of Pr(Y; | L;)

% = — Still recombined with ® but ...

L %* — O ?) - ... Training done jointly with L,
— Need to backprop gradients

through ®

Pytorch code available at
github.com/uclcrypto/Scheme-Aware-Architectures
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Back to our Simulated Experiments

Scheme-aware Uninformed Worst-case
2
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Figure: Learning curves: MI estimation vs. data complexity.
Scheme-Aware spares some data complexity
14 /23
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Application to Experimental Data

Scheme-aware Uninformed Worst-case
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Figure: Learning curves: MI estimation vs. data complexity.
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What about Higher Order Masking?

Affine masking: positive results on simulation, but not on experimental data.

Why ? The Plateau Effect
8.5 %

Loss [bits]
\‘
(6;]
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~l
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Epochs 1623

Don't Learn What You already Know

Loic Masure



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

Content

The Elephant in the Room

Loic Masure Don’t Learn What You already Know 17 /23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

The Elephant in the Room
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(a) ASCAD fixed key. (b) ASCAD random keys.

(b) Perin & Picek, SAC'20
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(a) First order masking (o = 1) (b) Second order masking (o = 0.5) Namber o epochs

(c) Cristiani et al., JoC'23 (d) Lu et al., Ches'21
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How Masking Affects the Plateau Length

Simulation with HW leakage model and exhaustive dataset (no profiling error)

Plateau Length
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(a) Scheme-aware.

Loic Masure
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Order d
(b) Uninformed.
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An Explanation

THEOREM (INFORMAL?)

Assume that each L; is i.i.d. standard Gaussian in RP. Define the target
function hy, (I) = [1¢_ sign (uTl;), for some normalized hyperplane u. Let my
be a model, such that [HV@ m9||2} < G(#)?. Then,

2 2 d log(p) ’
1§G(0) (9(4 Y )

The gradient almost takes the same direction, regardless of u !

[HV(;E ~E[V4L (6)

'Shalev-Shwartz, Shamir, and Shammah, “Failures of Gradient-Based Deep Learning”, p. ICML 2017.
Loic Masure Don't Learn What You already Know 20 /23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

Content

Conclusion

Loic Masure Don’t Learn What You already Know 21 /23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

Open Problems

How to tackle higher orders with DL remains unclear: GD really not suitable ?
— Efficient surrogate to gradient descent ?
— Then current evaluator run suboptimal attacks
— No efficient surrogate to GD (reduction to hard learning problem) ?

—Then intrinsic gap between worst-case approach and others

Worth investigating, no matter the answer !

Loic Masure Don't Learn What You already Know 22 /23



Introduction: SCA & Masking Deep Learning Against Masking Scheme-Aware Approach The Elephant in the Room Conclusion References

References |

Shalev-Shwartz, S., O. Shamir, and S. Shammah. “Failures of
Gradient-Based Deep Learning”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of
Machine Learning Research. PMLR, 2017, pp. 3067-3075. URL:
http://proceedings.mlr.press/v70/shalev-shwartzi7a.html.

Loic Masure Don’t Learn What You already Know 23 /23


http://proceedings.mlr.press/v70/shalev-shwartz17a.html

	Introduction: SCA & Masking
	Deep Learning Against Masking
	Scheme-Aware Approach
	The Elephant in the Room
	Conclusion
	References

