RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Hao Cheng¹

Johann Großschädl^1 Ben Marshall^2 Dan Page^3 Thinh Pham^3

¹ University of Luxembourg ² PQShield Ltd ³ University of Bristol

CHES 2023

Lightweight cryptography (LWC)

- Definition
 - "Cryptography tailored for resource-constrained devices"
 - Efficient on constrained hard/software platforms (vs. existing NIST standards)
 - Efficient for short messages
 - Amenable to countermeasures against implementation attacks
- NIST LWC standardization process
 - ▶ 08/2018: Call for Algorithms
 - 03/2021: Final Round begins (10 finalists)
 - ▶ 02/2023: NIST selects ASCON for standardization
 - At present: Drafting the LWC standard

Motivation

Efficiency in software

- ▶ Fast execution time, small code size, low RAM footprint, ...
- Largely determined by instruction set ("HW/SW boundary")
- Idea: Customize/tailor instruction set for target algorithm
- Goal: Improve SW efficiency at low HW overhead
- Instruction Set Extensions (ISEs) for cryptography
 - ▶ Widespread availability for AES and SHA-2 (e.g., x86, ARM, POWER, RISC-V)
 - Question: How efficient will ISE for NIST LWC standard be?

RISC-V

- Open Instruction Set Architecture (ISA)
 - Originally developed at UC Berkeley (2010)
 - Provided under open-source licenses (no fees)
 - Based on well-established RISC principles
- Modular ISA design
 - Minimalist base integer instruction set (RV32I) with only 47 instructions (no rotates)
 - Optional extensions (many still in development)
 - E.g., extension for scalar cryptography (49 instr.)

RISC-V scalar cryptography extension

General-purpose instructions

- Useful for a wide range of cryptographic algorithms
- Instructions for rotations and permutations
- Logic-with-negate instructions (e.g., andn), but no logic-with-shift/rotate

Special-purpose instructions

- For particularly important algorithms
- AES variants
- ▶ SHA-256 and SHA-512
- SM3 and SM4
- Entropy source interface
 - For generation of secret-key material
 - Full specification: https://github.com/riscv/riscv-crypto/releases

LWC finalists overview

Submission	AEAD	Hash	Component(s)
Grain-128AEADv2	~		Stream cipher
GIFT-COFB	~		Block cipher
Romulus	~	~	(Tweakable) Block cipher
Ascon	~	~	Permutation
Elephant	~		Permutation
ISAP	~		Permutation
PHOTON-Beetle	~	~	Permutation
Schwaemm & Esch	~	~	Permutation
TinyJAMBU	~		(Keyed) Permutation
Xoodyak	~	~	Permutation

LWC finalists overview

Submission	AEAD	Hash	Component(s)
Grain-128AEADv2	~		L/NFSRs
GIFT-COFB	~		GIFT-128
Romulus	~	~	Skinny-128-384+
Ascon	~	~	Ascon- <i>p</i>
Elephant	~		Spongent- $\pi[n]$ or Keccak- $f[m]$
ISAP	~		ASCON- p or KECCAK- f [m]
PHOTON-Beetle	~	~	PHOTON ₂₅₆
Schwaemm & Esch	~	~	SPARKLE (incl. Alzette ARX-box)
TinyJAMBU	~		P_n (incl. LFSR)
Xoodyak	~	~	Χοοdoo

ISE design guidelines

- Obey the wider RISC-V design principles
 - Support simple building-block operations
 - Instruction encodings must have at most 2 source and 1 destination registers
 - Instruction length must be 32 bits
 - 3-register instruction can have 5-bit immediate value (optional)
 - ▶ Disallow other approaches, e.g., tightly-coupled accelerator that processes entire state
- ▶ Use RISC-V scalar register file
 - Operands and result must be read from and written to general-purpose registers
- No special-purpose (micro-)architectural state
 - No special registers, caches, or scratch-pad memory
- Operation of instruction should be executed in 1 cycle in its HW module
 - Constant-time execution must be guaranteed

ISE design flow

- 1 Identify kernel
 - Profiling tools can help to find the most performance-critical function
- 2 Implement kernel in assembly language using base ISA
 - Base ISA: RV32GC + Zbkb (crypto bitmanip) + Zbkx (crypto crossbar)
- **3** Design custom instructions
 - Follow basic ISE design guidelines explained before
- Integrate custom instructions into toolchain
 - Assembler (GAS) and instruction-set simulator (Spike)
- B HW design of functional unit (LWC FU) and integration into base core
 - FPGA prototype of Rocket core
- 6 Implement kernel using ISE
- **Z** Evaluate implementations (e.g., HW overhead, SW latency/throughput)

Extended 32-bit Rocket core

Cores (on Xilinx Kintex-7 xc7k160tfbg676 FPGA)

- Unextended core: RV32GC
- Base core: RV32GC + Zbkb (crypto bitmanip) + Zbkx (crypto crossbar)
- Extended core: RV32GC + Zbkb/x + LWC FU
- ► HW implementation of ISE
 - Modification of instruction decoder
 - Integration of ISE-specific functional unit into Rocket core

ISEs overview

Submission	Target AEAD	Kernel	# Instr.
Ascon	Ascon-128	P[6 12]	2
Elephant	Dumbo	permutation	3
GIFT-COFB (BS)	GIFT-COFB	giftb128	2
GIFT-COFB (FS)	GIFT-COFB	giftb128	7
Grain-128AEADv2	Grain-128AEADv2	grain_keystream32	10
ISAP	ISAP-A-128A	Ascon_Permute_Nrounds	2
PHOTON-Beetle	PHOTON-Beetle-AEAD[128]	PHOTON_Permutation	1
Romulus (TB)	Romulus-N	Skinny_128_384_plus_enc	6
Romulus (FS)	Romulus-N	Skinny128_384_plus	8
Sparkle	$\mathrm{Schwaemm}256\text{-}128$	Sparkle_opt	4
TinyJAMBU	TinyJAMBU-128	state_update	4
Xoodyak	Xoodyak	Xoodoo_Permute_12rounds	1

$\mathsf{ISE}\xspace$ for $\operatorname{Ascon}\xspace$

Addition of constants

▶ 1 instr.

S-Box

- RV32GC: 17 instr. for half of the state
- > + Zbkb/x: 15 instr. (andn, orn) for half of the state
- No custom instruction can help further

$\mathsf{ISE}\xspace$ for $\operatorname{Ascon}\xspace$

Linear layer

RV32GC (+ Zbkb/x): 16 instr. for one 64-bit word

```
• 2 custom instr. for one X_i := X_i \oplus (X_i \gg m) \oplus (X_i \gg n)
```

Define the look-up tables for constant distances

```
1 R0T_0 = { 19, 61, 1, 10, 7 }
R0T_1 = { 28, 39, 6, 17, 41 }

> ascon.sigma.lo rd, rs1, rs2, imm

1 x_hi ← GPR[rs2]

2 x_lo ← GPR[rs1]

3 x ← x_hi || x_lo

4 r ← x (x >>> R0T_0[ imm ] ) ^ (x >>> R0T_1[ imm ] )

5 GPR[rd] ← r_{31.. 0}
```

ascon.sigma.hi rd, rs1, rs2, imm

```
1 x_hi \leftarrow GPR[rs1]

2 x_lo \leftarrow GPR[rs1]

3 x \leftarrow x_hhi || x_lo

4 r \leftarrow x^{hi} || x_lo

5 GPR[rd] \leftarrow r_{(63..32)}
```

Bit-Interleaving (BI) has adverse impact due to conversions

 $\begin{aligned} X_0 &:= X_0 \oplus (X_0 \gg 19) \oplus (X_0 \gg 28) \\ X_1 &:= X_1 \oplus (X_1 \gg 61) \oplus (X_1 \gg 39) \\ X_2 &:= X_2 \oplus (X_2 \gg 1) \oplus (X_2 \gg 6) \\ X_3 &:= X_3 \oplus (X_3 \gg 10) \oplus (X_3 \gg 17) \\ X_4 &:= X_4 \oplus (X_4 \gg 7) \oplus (X_4 \gg 41) \end{aligned}$

Hardware-oriented evaluation

15%-32% more LUTs (14% from Zbkb/x)

Submission	Unextended core: RV32GC	Base core: RV32GC + Zbkb/x	Extended core: RV32GC + Zbkb/x + ISE
		ZBRB/X	ZURD/X IOL
Ascon			4234 (1.282×)
Elephant			3938 (1.192×)
GIFT-COFB (BS)		3764 (1.140×)	3906 (1.183×)
GIFT-COFB (FS)	- 3303 (1.000×)		4370 (1.323×)
Grain-128AEADv2			4271 (1.293×)
ISAP			4234 (1.282×)
PHOTON-Beetle			3892 (1.178×)
Romulus (TB)			3998 (1.210×)
Romulus (FS)			4205 (1.273×)
Sparkle			4097 (1.240×)
TinyJAMBU			3863 (1.170×)
Xoodyak			3814 (1.155×)
AES-GCM			4331 (1.311×)

Software-oriented vertical evaluation (128-byte Data/AssocData)

		Original	Replacement		
Submission		kernel	kernel		
	F II.	implementation	implementation		
	Functionality	Unextended ISA:	Base ISA:	Extended ISA:	
		RV32GC	RV32GC	RV32GC	
			+	+	
			Zbkb/x	Zbkb/x + ISE	
Asson	aead_encrypt	43005(1.00×)	32316 (1.33×)	16775 (2.56×)	
ASCON	aead_decrypt	43414(1.00×)	32694 (1.33×)	17159 (2.53×)	
Elephant	aead_encrypt	$16044010(1.00 \times)$	401543 (39.96×)	65118(246.38×)	
Elephant	aead_decrypt	$16044075(1.00 \times)$	402787 (39.83×)	65079(246.53×)	
	aead_encrypt	$687611(1.00 \times)$	42048 (16.35×)	31018 (22.17×)	
GIFT-COFB (B3)	aead_decrypt	687543(1.00×)	42093 (16.33×)	30887 (22.26×)	
GIFT-COFB (FS)	aead_encrypt	$687611(1.00 \times)$	41884 (16.42×)	33763 (20.36×)	
	aead_decrypt	$687543(1.00 \times)$	41749 (16.47×)	33642 (20.44×)	
Grain-128AEADv2	aead_encrypt	87682(1.00×)	85826 (1.02×)	64083 (1.37×)	
	aead_decrypt	$86656(1.00 \times)$	84897 (1.02×)	63148 (1.37×)	
ISAP	aead_encrypt	$489529(1.00 \times)$	135851 (3.60×)	77577 (6.31×)	
	aead_decrypt	$285242(1.00 \times)$	88894 (3.21×)	48138 (5.93×)	
PHOTON-Beetle	aead_encrypt	$8065027(1.00 \times)$	1149521 (7.02×)	29372(274.58×)	
	aead_decrypt	$8063672(1.00 \times)$	1150013 (7.01×)	29407(274.21×)	
Demulue (TD)	aead_encrypt	$1018364(1.00 \times)$	213180 (4.78×)	32880 (30.97×)	
Kontalus (TB)	aead_decrypt	$1017990(1.00 \times)$	213444 (4.77×)	$33049(30.80 \times)$	
Romulus (ES)	aead_encrypt	$177043(1.00 \times)$	203476 (0.87×)	40351 (4.39×)	
Komulus (F5)	aead_decrypt	$177326(1.00 \times)$	203444 (0.87×)	41257 (4.30×)	
SPARKLE	aead_encrypt	30033(1.00×)	12883 (2.33×)	5218 (5.76×)	
SPARKLE	aead_decrypt	$30053(1.00 \times)$	12910 (2.33×)	5268 (5.70×)	
TinyJAMBU	aead_encrypt	$39851(1.00 \times)$	33574 (1.19×)	19118 (2.08×)	
	aead_decrypt	40432(1.00×)	34033 (1.19×)	19562 (2.07×)	
Xoodyak	aead_encrypt	192338(1.00×)	14579 (13.19×)	13616 (14.13×)	
	aead_decrypt	$192149(1.00 \times)$	14397 (13.35×)	13429 (14.31×)	
AES-GCM	aes128_enc_gcm			7566	
	aes128_dec_vfy_gcm			7716	

Software-oriented horizontal evaluation (RV32GC + Zbkb/x + ISE)

UNIVERSITY OF LUXEMBOURG
Department of Computer Science

Concluding remarks

- Main observations
 - Sort of open if/how ISE-based approaches should be accommodated in "official" platforms
 - Maybe should define a reference platform that could support work on ISEs
 - HW-oriented candidates achieve a higher speed-up than SW-oriented ones
 - Nonetheless, SW-oriented candidates remain the top-performers
- Source code
 - Available on GitHub: https://github.com/scarv/lwise
 - Feedback is welcome!
 - Proposals for better ISE are welcome!
 - ISE proposals have to follow design guidelines

Thank you for your attention!

