

Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks

G. Cassiers, L. Masure, C. Momin, T. Moos, F.-X. Standaert

Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium. Graz University of Technology, Graz, Austria.

European Research Council

Adversaries Make Imprecise Observations, Masking Amplifies Imprecision:

Adversaries Make Imprecise Observations, Masking Amplifies Imprecision:

Adversaries Make Imprecise Observations, Masking Amplifies Imprecision:

Adversaries Make Imprecise Observations, Masking Amplifies Imprecision:

UCLouvain

2

But Does it Always? An Example Based on Hamming Weight Leakage:

G. Cassiers, L. Masure, C. Momin, T. Moos, F.-X. Standaert | Prime-Field Masking in Hardware and its Soundness againstLow-Noise SCA Attacks | September 11th, 2023

3

But Does it Always? An Example Based on Bit Leakage (LSB):

G. Cassiers, L. Masure, C. Momin, T. Moos, F.-X. Standaert | Prime-Field Masking in Hardware and its Soundness againstLow-Noise SCA Attacks | September 11th, 2023

Why Prime-Field Masking?

Noise-Free Hamming Weight Leakage of 2 Shares:

UCLouvain

Why Prime-Field Masking?

Noise-Free Hamming Weight Leakage of 3 Shares:

$$a = a_0 \oplus a_1 \oplus a_2$$

$$\mathbb{F}_{2^3-1}$$

UCLouvain

X

$$a = a_0 + a_1 + a_2 \mod 7$$

$$IW(a_0) = 2$$

$$IW(a_1) = 1 \Rightarrow \parallel_{\mathbf{U}}$$

$$IW(a_2) = 2$$

$$IW(a_2) = 2$$

$$IW(a_1) = 1 \Rightarrow = 1$$

F

Why Prime-Field Masking?

Noise-Free Hamming Weight Leakage of 4 Shares:

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3$$

$$\mathbb{F}_{2^3-1}$$

$$a = a_0 + a_1 + a_2 + a_3 \mod 7$$

$$\begin{array}{cccc}
\mathrm{HW}(a_0) = 2 & & & & \\
\mathrm{HW}(a_1) = 1 & & & \\
\mathrm{HW}(a_2) = 2 & & & \\
\mathrm{HW}(a_3) = 1 & & & \\
\end{array}$$

UCLouvain

Why Prime-Field Masking?

Noise-Free Hamming Weight Leakage of 5 Shares:

$$= a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4$$

$$\mathbb{F}_{2^3-1}$$

UCLouvain

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4$$

$$a = a_0 + a_1 + a_2 + a_3 + a_4 \mod 7$$

 $HW(a_0) = 2$ X $HW(a_1) = 1$ $\Pr[a =$ $HW(a_2) = 2 \Rightarrow$ $HW(a_3) = 1$ $HW(a_4) = 1$ 0 1 2 3 4 5 6 X

Why Prime-Field Masking?

Noise-Free Hamming Weight Leakage of 6 Shares:

$$\mathbb{F}_{2^{3}-1}$$

UCLouvain

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5$$

$$a = a_0 + a_1 + a_2 + a_3 + a_4 + a_5 \mod 7$$

777

$$HW(a_{0}) = 2
 HW(a_{1}) = 1
 HW(a_{2}) = 2
 HW(a_{3}) = 1
 HW(a_{4}) = 1
 HW(a_{5}) = 2
 0
 0
 1
 2
 3
 4
 5
 6
 X$$

Why Prime-Field Masking?

Parity of HWs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Why Prime-Field Masking?

Parity of HWs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Parity of HWs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Noise-Free Bit Leakage (LSB) of 2 Shares:

UCLouvain

Why Prime-Field Masking?

 \mathbb{F}_{23}

Noise-Free Bit Leakage (LSB) of 3 Shares:

UCLouvain

Why Prime-Field Masking?

Noise-Free Bit Leakage (LSB) of 4 Shares:

$$a = a_0 + a_1 + a_2 + a_3 \mod 7$$

UCLouvain

Why Prime-Field Masking?

Noise-Free Bit Leakage (LSB) of 5 Shares:

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4$$

$$\mathbb{F}_{2^3-1}$$

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4$$

$$a = a_0 + a_1 + a_2 + a_3 + a_4 \mod 7$$

 $LSB(a_0) = 0$ X $LSB(a_1) = 1$ $\Pr[a =$ $LSB(a_2) = 1 \Rightarrow$ $LSB(a_3) = 0$ $LSB(a_4) = 0$

UCLouvain

Why Prime-Field Masking?

Noise-Free Bit Leakage (LSB) of 6 Shares:

$$\mathbb{F}_{2^{3}-1}$$

$$a = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5$$

$$a = a_0 + a_1 + a_2 + a_3 + a_4 + a_5 \mod 7$$

Why Prime-Field Masking?

Parity of LSBs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Parity of LSBs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Parity of LSBs \rightarrow Subgroup of \mathbb{F}_{2^n} :

Why Prime-Field Masking?

Parity of LSBs \rightarrow Subgroup of \mathbb{F}_{2^n} :

UCLouvain

That's Why!

- Advanced multivariate SCA attacks aim to extract and combine as much information as possible about a targeted intermediate to reduce the effective noise level
- "Algebraic compatibility" between leakage functions and field arithmetic can become a problem in practice when the effective noise level is too low
- Parallelism may not save binary-field masking either, parities are still visible
- Whenever ≥ 1 bit of information per share is leaked, masking in binary fields may not guarantee security amplification
- \mathbb{F}_p with p a prime has no non-trivial subgroups, i.e., no "algebraic compatibility"
- Amplification is guaranteed for <u>any</u> non-injective leakage model!

How to leverage?

Q: How can we make use of masking in \mathbb{F}_p to effectively and efficiently protect crypto implementations?

A: Ideally, we need algorithms that work in implementation-friendly prime fields, such as small-Mersenne-prime fields (\mathbb{F}_{2^n-1}), and use only simple field arithmetic $(+, -, \cdot)$

AES-prime

UCLouvain

AES-prime: An AES-like toy cipher adapted for prime-field masking

- Based on arithmetic addition/multiplication modulo a prime, applied to 4×4 state
- Small Mersenne prime, i.e., $p = 2^7 1$, for efficient reduction (and constant mult.)
- Sbox is based on a small power map in \mathbb{F}_p (bijection without fixed point)
- MixColumns is a 4 imes 4 MDS matrix over \mathbb{F}_p
- Security claim: Attack complexity $\ge 2^{7 \cdot 16}$ with 14 cipher rounds

$$S(x) = x^{5} + 2 \mod p \qquad \qquad M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 16 \\ 1 & 4 & 16 & 2 \\ 1 & 16 & 2 & 4 \end{bmatrix}$$

One Problem!

- To implement masked power maps securely in hardware we ideally need robust probing secure and composable multiplications <u>and</u> squarings
- Secure and composable masked multiplication gadgets are well-known, some are even field agnostic (e.g., ISW, DOM-indep, HPC1)
- The squaring operation, due to its linearity in Boolean masking, has not received much attention in that regard (typically no gadget needed)
- However, as squaring is non-linear in prime fields we either have to use multiplication gadgets or develop secure squaring gadgets
- We opted for the second solution!

Glitch-robust 1-PINI Squaring Gadget (any field)

Glitch-robust 2-PINI Squaring Gadget (any field)

Glitch-robust 3-PINI Squaring Gadget (any field)

Glitch-robust (d-1)-PINI Squaring Gadget (any field)

Algorithm 1 Masked squaring (glitch-robust PINI) with d shares.

Input: Sharing **a**. **Output:** Sharing **b** such that $b = a^2$.

1: for i = 0 to d - 1 do for i = i + 1 to d - 1 do 2: $r_{ii} \stackrel{\$}{\leftarrow} \mathbb{F}_n$ 3: 4: $r'_{ii} \stackrel{\$}{\leftarrow} \mathbb{F}_n$ 5: $\alpha_{ij} \leftarrow 2\mathbf{a}_j + r_{ij}$ 6: $\beta_{ij} \leftarrow \mathbf{a}_i \operatorname{Reg}\left(\alpha_{ij}\right) + r'_{ij}$ 7: for i = 0 to d - 1 do $\gamma_i \leftarrow \mathbf{a}_i \left(\mathbf{a}_i - \sum_{j=i+1}^{d-1} r_{ij} \right)$ 8: $\mathbf{b}_{i} = \operatorname{Reg}\left(\gamma_{i}\right) + \sum_{i=i+1}^{d-1} \operatorname{Reg}\left(\beta_{ii}\right) - \sum_{i=0}^{i-1} r'_{ii}$ 9: \triangleright Blue Reg not needed for PINI.

Comparison to PINI multiplications (any field)

_

Gadget	d	Multiplications	Squarings	Randomness	Reg. stages
HPC1	2	4	0	2	2
HPC1	3	9	0	5	2
HPC1	d	d^2	0	$d^2/2 + \mathcal{O}(d\log d)$	2
Algorithm 2	2	2	1	2	1
Algorithm 3	3	6	0	5	1
Algorithm 1	d	d(d+1)/2 - 1	1	d(d-1)	2

UCLouvain

Optimized PINI S-boxes

- Using those gadgets we built 3 optimized order-specific PINI AES-prime S-boxes
- 2 Shares: 2 x 1-cycle SQ + DOM-indep = 3-cycle masked S-box
- 3 Shares: 2 x 1-cycle SQ + Reg + DOM-indep = 4-cycle masked S-box
- 4 Shares: 2 x 2-cycle SQ + DOM-indep = 5-cycle masked S-box
- Constructions and proofs in the paper!

Mersenne Prime Field Operations in Hardware

UCLouvain

Field Addition in \mathbb{F}_{2^n-1} in VHDL ($c = a + b \mod p$)

ab <=
$$('0' \& a) + ('0' \& b);$$

c <= ab(n-1 downto 0) + ('0' & ab(n));</pre>

Field Multiplication in \mathbb{F}_{2^n-1} in VHDL ($c = a \cdot b \mod p$)

```
ab <= a * b;
ab_r <= ('0' & ab(n-1 downto 0)) + ('0' & ab(2*n-1 downto n));
c <= ab_r(n-1 downto 0) + ('0' & ab_r(n));</pre>
```

Works with NUMERIC_STD package as well as the proprietary STD_LOGIC_ARITH & STD_LOGIC_UNSIGNED packages

• If c < p is strictly needed for the addition result, then $c \stackrel{?}{=} p$ needs to be checked after reduction

S-box Cost and Performance Comparison (ASIC)

S-box	Shares d	Area [GE]	Crit. Path [ns]	Reg. Stages	Randomn. [bits]
AES	1	697.75	0.83	0	0
	2	4980.25	0.40	6	34
	3	10788.00	0.44	6	102
	4	18485.00	0.51	6	204
AES-prime	1	2165.75	1.81	0	0
	2	6449.50	1.93	3	35
	3	16493.75	2.21	4	91
	4	31992.75	1.50	5	210

S-box Cost and Performance Comparison (FPGA)

S-box	Shares d	\mathbf{FFs}	LUTs	Slic.	DSPs	Crit. Path [ns]	Reg. Stag.
AES	1	0	87	19	0	3.63	0
	2	616	513	101	0	5.08	6
	3	1362	1217	212	0	5.53	6
	4	2400	2203	523	0	6.79	6
AES-prime	1	0	72	24	3	6.99	0
	2	133	495	123	10	5.95	3
	3	364	1207	246	21	6.69	4
	4	1022	2462	487	36	7.02	5
AES-prime*	1	0	204	39	0	5.76	0
	2	133	1095	202	0	5.55	3
	3	364	2589	464	0	6.26	4
	4	1022	4774	834	0	7.13	5

UCLouvain

*Use of DSP slices prohibited

t-statistics

Key Rank

S-box SCA Security Comparison (Dynamic Power)

Power Cons Power Cons 0 100 200 300 400 50 100 150 200 250 0 Time Samples Time Samples 0.75 0.75 ----- Share 3 Share 3 Share 1 Share 1 Share 2 Share 2 HNS 0.25 0.5 HNS 0.5 0.25 0.5 0 0 0 100 200 300 400 50 100 150 200 250 Time Samples Time Samples 1st to 2nd order 1st to 2nd order 3rd order t-statistics 3rd order 50 50 5 10 5 10 No. of Traces $\times 10^6$ No. of Traces $\times 10^6$ 28 Key Rank ⁵ ⁵ ⁵ 2⁴ 2⁰ 100 10^{2} 10^{3} 10^{4} 10⁵ 10^{6} 10^{0} 102 105 10⁶ 10^{1} 10¹ 10^{3} 10^{4} No. of Traces No. of Traces

G. Cassiers, L. Masure, C. Momin, T. Moos, F.-X. Standaert | Prime-Field Masking in Hardware and its Soundness againstLow-Noise SCA Attacks | September 11th, 2023

Static Power Measurement Setup

S-box SCA Security Comparison (Static Power)

S-box SCA Security Attack Comparison

Cipher	Shares d	Dynamic Power		Static Power	
		Absolute	Factor	Absolute	Factor
	1	2		2	
	2	385		10	
ALS	3	35084		1186	
	4	944390		59281	
	1	3	1.50	3	1.50
AEG_prime	2	2992	7.77	123	12.30
AF2-bi ille	3	> 1000000	> 28.50	88921	74.98
	4	> 1000000	-	> 100000	-

Conclusion

- Additive masking in small and implementation-friendly prime fields seems promising for efficient physically secure cryptography
- We can mask securely without the need to guarantee a notable amount of noise
- Secure and composable squaring gadgets enable efficient hardware designs
- We demonstrated: Security advantages over Boolean masking can reach orders of magnitude against low-noise attacks in practical experiments
- New dedicated ciphers for efficient masking in prime fields are needed to explore the interest of this design space
- Code: https://github.com/uclcrypto/prime_field_masking_hardware