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Overview of side channel analysis
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Profiling attack
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Deep neural network (DNN)
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Profiling attack with DNN
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Advantage of using DNN-based SCA

Classic SCA (i.e. Template Attack) DNN-based attack
More traces to attack Significantly lesser traces to attack

Preprocessing to remove any desynchronization in the traces No preprocessing needed
Preprocessing to obtain Points of Interest (PoIs) No preprocessing needed
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Disadvantages of DNN

• Currently, Deep Neural Networks (DNNs) are seen as a
black-box tool.

• The DNNs have far more hyperparameters to tune
compared to classical SCA techniques.

• Unable to tell which architecture to use.
• Presently, auto-tune methods to find hyperparameters and

architecture are time consuming.
• The evaluator wants to help the developer localize and

understand where the vulnerability comes from in order to
remove or at least reduce it.

Problem:
Lesser works in interpretability/explainability of DNNs within SCA.
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Explainability of DNN

We want to explore what the neural network is learning in
side-channel analysis.

Goal:
Propose a neural network that is easy to interpret.

The proposed architecture is not for efficiency.
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Neural network and truth table

Convolution of two layers.
Layer 1: kernel size = 4, stride = 2
Layer 2: kernel size = 2, stride = 2
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Neural network and truth table

Patch Size

Observe that first 6 features of the input is used to calculate the
first output of the last layers.
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Neural network and truth table

Patch Size

Truth Table, x
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Binarized input and output.

• Can create a truth table by enumerating all possible input.
• This truth table can be converted into SAT equations for interpretation.
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Truth table deep convolution neural Network (TT-DCNN)

• It is possible to interpret the Convolution layers as SAT
equations from the truth table.

• Convert to Disjunctive Normal Form (DNF) using the
Quine-Mccluskey Algorithm. (e.g. (x0 ∧ x1) ∨ (x2 ∧ ¬x1))

• Application of the TT-DCNN to SCA: Able to pinpoint
location on the Point of Interest for the leakages in the
traces and combine the leakages.
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Heuristic used to analyse the SAT equations

We want to know which are the important disjuncts/literals, as
most of the disjuncts are unnecessary for key recovery. We
proposed three types of heuristic:

1. Sieving disjuncts based on their size
(e.g. (x1 ∧ ¬x3 ∧ x5 ∧ ¬x6) is a disjunct of size 4),

2. Separating disjuncts based on their combinations of literals
(CoLs) (e.g. CoL of x1, x3, x5, x6, examples of disjuncts of
these combination are (x1 ∧ ¬x3 ∧ x5 ∧ ¬x6)),

3. Trimming disjuncts based on the literals.
(e.g. trimming the literal (x3) then the (x1 ∧ ¬x3 ∧ x5 ∧ ¬x6)
become (x1 ∧ x5 ∧ ¬x6).)

Goal:
Find the most miniature set of rules that the neural network needs
for key recovery.
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TT-DCNN architecture, TTSCAsmall

We found out that the neural network overfits very fast due to it
being a perfect world. Therefore, we proposed the following
architecture called TTSCAsmall .
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Results of TTSCAsmall on simulated data with masking order 1

Masking
Supposed there are d + 1 leakages points, L1, . . . Ld+1, then the
secret variable, Z , is

Z = g(L1, L2, . . . , Ld+1).

A common function g is the Boolean XOR of each leakage points
(aka Boolean Masking).

A visualization of the simulated traces are shown below and we
observed that the neural network sees the following:

Lm1

x0 x1 x2 x3 x4 x5 x6 x7 x8

where L = Z ⊕ m1.
22



Results for simulated data with masking order 1

The Guess Entropy for order 1 for different sizes is as follows:

Conclusion: The disjuncts of size 2 is the smallest size with mean
rank going to 0 (see orange line).
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Results for simulated data with masking order 1

The disjuncts of size 2 are

(x1 ∧ ¬x6), (x6 ∧ ¬x1), (¬x6 ∧ ¬x1).

Lm1

x0 x1 x2 x3 x4 x5 x6 x7 x8
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Results for simulated data with masking order 1

Since there is only one CoL; the CoL for (x1, x6). We trim based
on (x1) and (x6) individually.

Lm1

x0 x1 x2 x3 x4 x5 x6 x7 x8

The most important literals are x1 and x6. 25



Results for simulated data with masking order 1

The TTSCAsmall can pinpoint the leakage’s position and use it to
retrieve the key.

We obtained similar results for masking orders of 0, 2 and 3. 26



Masking with Flaws

Suppose we consider simulated traces with masking order 3.
Furthermore, we consider the existence of the leak A = m2 ⊕ m3 at
x2.

(a) CoL of (x1, x2, x6).

m1 m2 m3LA

x0 x1 x2 x3 x4 x5 x6 x7 x8 (exploitable leakage)
x0 x1 x2 x3 x4 x5 x6 x7 x8 (original leakage)

(b) Denote L = Z ⊕ m1 and
A = m2 ⊕ m3 the mask combination.

We observe that the TTSCAsmall is able to detect the exploitable
leakage of x1, x2 and x6 to recover the key (blue line in Figure (a)).
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Further investigation

We train TTSCAsmall on new simulated traces of masking order 1;
where we place m1 and L = Z ⊕ m1 place at trace[1] and trace[10]
respectively.

(a) Guessing entropy of TTSCAsmall

trained on the new simulated traces
of masking order 1.

Lm1

(b) Orange, light blue and light green
boxes shows that patch size when it is
at timestamp 1, 2 and 3 respectively.
Denote L = Z ⊕ m1.

Conclusion: At any point in time, both m1 and L = Z ⊕ m1 need
to lie within the same patch for TTSCAsmall to recover the key. 28
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Challenges when finding an architecture

• Most obvious way to apply TTSCAsmall onto longer traces is
to increase its patch size

• However, the size of the patch cannot be more than 12, due
to solving an NP complete problem of simplifying SAT
equations.

• Because of this limitation on the patch size, it is harder for
us to apply onto longer traces, especially in practical traces.
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LTT block

In order to increase the learning capacity of the TT-DCNN, we use
an extra convolutional layer of kernel size 1 as proposed in
Benamira et al. [1].
This is known as Learning Truth Table (LTT) Block.

First 1D-CNN layer of kernel size 2, stride 1 and group
g = 2. The second 1D-CNN layer have an amplification

parameter, t = 3 of kernel size 1 and stride 1.
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TTSCAbig architecture
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TT-DCNN architecture TTSCAbig

• We consider the first convolution layer and average pool as a
preprocessing block on the traces.

• The preprocessing block allows us to have a patch size of ≤ 12.
• The LTT Block Layer is then converted into SAT Equations with each

literals corresponds to a window of PoIs.
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Results for ASCADv1 f

The preprocessing block provided the following windows of PoIs for
each literal.

Sample Points 0 to 99 100 to 199 200 to 299 300 to 399 400 to 499 500 to 599 600 to 699

Literal x0 x1 x2 x3 x4 x5 x6

Table 1: Sample points for each literals of TTSCAbig on ASCADv1 f.
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Results for ASCADv1 f

The Guess Entropy for ASCADv1 for the different sizes is given as
follows:

Conclusion: The disjuncts of size 4 is the smallest size with mean
rank going to 0 (see red line). 34



Results for ASCADv1 f

We obtained the Critical CoLs (aka CoLs relevant for key recovery)
using Algorithm 1 in our paper:

List Of Critical CoLs

(x0, x3, x4, x5) (x0, x1, x2, x3)
(x2, x3, x5, x6) (x0, x1, x2, x5)
(x0, x3, x5, x6) (x1, x2, x4, x6)
(x0, x3, x4, x6) (x0, x4, x5, x6)
(x0, x1, x2, x4) (x3, x4, x5, x6)
(x1, x2, x3, x4) (x1, x2, x4, x5)
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Results for ASCADv1 f

(a) Trimming with every individual
literals.

(b) Trimming to verify the relevancy
of x1 and x4.

Conclusion: literals x1, x2, x5 and x6 are important.
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Results for ASCADv1 f

Figure 4: CPA on the attack traces of ASCADv1 f.

The TTSCAbig is able to use the PoIs to retrieve the key.
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Interesting Result

Each training is non-deterministic, this means each neural network
will have slight different interpretation.

In the best case, we are able to recover the key with only filter 66:

x1 ⊕ ¬x5 = (x1 ∧ x5) ∨ (¬x1 ∧ ¬x5).

This is exactly the Boolean masking. 38



Interesting Result

x1 ⊕ ¬x5 = (x1 ∧ x5) ∨ (¬x1 ∧ ¬x5).

Overall: Retrieve the key with just one preprocessing block, one
XOR gate (i.e., the masking function), and one linear regression.
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Datasets used

Here, we have presented the results ASCADv1 f.
We also validated our approach on other 2 public datasets:

• ASCADv1 r,
• AES HD ext.
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Conclusion

• Proposed two type of architecture TTSCAsmall and TTSCAbig
for SCA.

• Proposed heuristics to analyse the SAT equations for SCA.
• Detect bad implementation.
• Able to pinpoint Points of Interest and combine the leakages

found. Best case: found the masking function.
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Thank You!
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