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• Fix 𝑎𝑖, 𝑏𝑖 ∈ 𝔽𝑝 for 0 ≤ 𝑖 < 𝑡, for a large prime 𝑝. 

Suppose we need to compute:



𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖  (mod 𝑝)
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• Fix 𝑎𝑖, 𝑏𝑖 ∈ 𝔽𝑝 for 0 ≤ 𝑖 < 𝑡, for a large prime 𝑝. 

Suppose we need to compute:



𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖  (mod 𝑝)

• This is a fundamental operation in several cryptologic applications. 
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𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖  (mod 𝑝)

The naïve way
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𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖  (mod 𝑝)

Cost: 𝑡 int multiplications and 𝑡 reductions.

• Assuming 𝑝 is represented in 𝑛 limbs:
• Using Montgomery arithmetic, the cost is 𝑡(2𝑛2 + 𝑛) digit-size multiplies.

The naïve way
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𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖 (mod 𝑝)

The good-old lazy-reduction way
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𝑖=0

𝑡−1

±𝑎𝑖 × 𝑏𝑖 (mod 𝑝)

Cost: 𝑡 int multiplications and 1 reduction.

Trade-off: use of “double-precision” additions.

• Assuming 𝑝 is represented in 𝑛 limbs:
• Using Montgomery arithmetic, it reduces the cost from 𝑡(2𝑛2 + 𝑛) to          

𝑡𝑛2 + (𝑛2 + 𝑛) digit-size multiplies.

The good-old lazy-reduction way
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Lazy reduction has been the de-facto technique. 

The good-old lazy-reduction way
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Lazy reduction has been the de-facto technique. 

This includes:

• SW implementations of pairings, elliptic curves, dlog schemes, etc., for 
constructive and cryptanalytic purposes
• In many cases in combination with (sub-quadratic) multiplication algorithms like 

Karatsuba.

The good-old lazy-reduction way
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Lazy reduction has been the de-facto technique. 

This includes:

• SW implementations of pairings, elliptic curves, dlog schemes, etc., for 
constructive and cryptanalytic purposes
• In many cases in combination with (sub-quadratic) multiplication algorithms like 

Karatsuba.

• Also many HW implementations
• Compact implementations sometimes prefer the naïve way.

The good-old lazy-reduction way
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Constructing degree-2 extension field 𝔽𝒑𝟐 of a finite field 𝔽𝒑:

Fix 𝔽𝑝2 = 𝔽𝑝(𝛼), with degree-2 irreducible polynomial 𝑓(𝑥) in 𝔽𝑝[𝑥] s.t. 
𝑓 𝛼 = 0 

Let’s assume 𝑝 ≡ 3 mod 4, and take 𝔽𝑝2 = 𝔽𝑝(𝑖)/(𝑖2 + 1)

A simple example: 𝔽𝒑𝟐 multiplication
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Constructing degree-2 extension field 𝔽𝒑𝟐 of a finite field 𝔽𝒑:

Fix 𝔽𝑝2 = 𝔽𝑝(𝛼), with degree-2 irreducible polynomial 𝑓(𝑥) in 𝔽𝑝[𝑥] s.t. 
𝑓 𝛼 = 0 

Let’s assume 𝑝 ≡ 3 mod 4, and take 𝔽𝑝2 = 𝔽𝑝(𝑖)/(𝑖2 + 1)

Then,

𝑎 × 𝑏 = 𝑎0 + 𝑎1𝑖 × 𝑏0 + 𝑏1𝑖 = ቊ
𝑐0 = (𝑎0𝑏0 − 𝑎1𝑏1)(mod 𝑝)
𝑐1 = (𝑎0𝑏1 + 𝑎1𝑏0)(mod 𝑝)

 

Cost: 4 int multiplications and 2 reductions.

A simple example: 𝔽𝒑𝟐 multiplication
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Since ~2010, (in SW) it’s all Karatsuba + lazy rdc :

𝑎 × 𝑏 = ቊ
𝑐0 = 𝑎0 + 𝑎1 × 𝑏0 + 𝑏1 − 𝑎0𝑏1 − 𝑎1𝑏0

 𝑐1 = 𝑎0𝑏1 + 𝑎1𝑏0  

A simple example: 𝔽𝒑𝟐 multiplication
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imul

Since ~2010, (in SW) it’s all Karatsuba + lazy rdc :

𝑎 × 𝑏 = ቊ
𝑐0 = 𝑎0 + 𝑎1 × 𝑏0 + 𝑏1 − 𝑎0𝑏1 − 𝑎1𝑏0

 𝑐1 = 𝑎0𝑏1 + 𝑎1𝑏0  

Cost:  3 int multiplications and 2 reductions. 
         

State-of-the-art: separated int multiplication and (Montgomery) 
reduction.

imul

rdc

imul

rdc

A simple example: 𝔽𝒑𝟐 multiplication
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A new, more efficient way:
Generalizing interleaved modular multiplication



• Let 𝑎𝑖, 𝑏𝑖 ∈ 𝔽𝑝 for 0 ≤ 𝑖 < 𝑡, for a large prime 𝑝. 

• Let 0 ≤ σ𝑖=0
𝑡−1 𝑎𝑖𝑏𝑖 < 𝑝𝑅, where 𝑅 = 2𝑛𝑤 , 𝑛 = 𝑙/𝑤 , 𝑙 = log 𝑝  and   

𝑤 is the computer wordsize.

• Let 𝑝′ = −𝑝−1 log 𝑟 for a certain radix-𝑟. 

Do it the Montgomery way
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• Let 𝑎𝑖, 𝑏𝑖 ∈ 𝔽𝑝 for 0 ≤ 𝑖 < 𝑡, for a large prime 𝑝. 

• Let 0 ≤ σ𝑖=0
𝑡−1 𝑎𝑖𝑏𝑖 < 𝑝𝑅, where 𝑅 = 2𝑛𝑤 , 𝑛 = 𝑙/𝑤 , 𝑙 = log 𝑝  and   

𝑤 is the computer wordsize.

• Let 𝑝′ = −𝑝−1 log 𝑟 for a certain radix-𝑟. 

Using interleaved radix-𝑟, we initialize 𝑐 = 0 and execute:

𝑐 = (𝑐 + 

𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖 + ((𝑐 + 

𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖) 𝑝′mod 𝑟) 𝑝)/𝑟

from 𝑗 = 0 to 𝑙/ log 𝑟 − 1.

Do it the Montgomery way
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SW example: coarsely integrated form
(Simplified)
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𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝)/𝑟

             ⋮



SW example: coarsely integrated form
(Simplified)
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For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝)/𝑟

             ⋮



SW example: coarsely integrated form
(Simplified)
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𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝)/𝑟

             ⋮



𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,𝑗 × 𝑏𝑖

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝)/𝑟

             ⋮

SW example: coarsely integrated form
(Simplified)
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mov    rdx, [rcx+8]
    MULADD64x384 [reg_p1+48], r9, r10, r11, r12, r13, r14, r8
    mov    rdx, [rcx+56]    
    MULADD64x384 [reg_p1], r9, r10, r11, r12, r13, r14, r8
    mov    rdx, [rip+u0]                                            
    mulx   rbp, rdx, r9
    MULADD64x384 [rip+p0], r9, r10, r11, r12, r13, r14, r8

Code example for pairing curve BLS12-381
(𝔽𝑝2  mul, 𝑡 = 2)
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For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0
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𝑎𝑖,𝑗 × 𝑏𝑖
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mov    rdx, [rcx+8]
    MULADD64x384 [reg_p1+48], r9, r10, r11, r12, r13, r14, r8
    mov    rdx, [rcx+56]    
    MULADD64x384 [reg_p1], r9, r10, r11, r12, r13, r14, r8
    mov    rdx, [rip+u0]                                            
    mulx   rbp, rdx, r9
    MULADD64x384 [rip+p0], r9, r10, r11, r12, r13, r14, r8

Code example for pairing curve BLS12-381
(𝔽𝑝2  mul, 𝑡 = 2)

.macro MULADD64x384 M1, Z0, Z1, Z2, Z3, Z4, Z5, Z6, T0, T1
    mulx   \T0, \T1, \M1
    adox   \Z0, \T1;    adox   \Z1, \T0  
    mulx   \T0, \T1, 8\M1
    adcx   \Z1, \T1;    adox   \Z2, \T0    
    mulx   \T0, \T1, 16\M1
    adcx   \Z2, \T1;    adox   \Z3, \T0
    mulx   \T0, \T1, 24\M1
    adcx   \Z3, \T1;    adox   \Z4, \T0
    mulx   \T0, \T1, 32\M1
    adcx   \Z4, \T1;    adox   \Z5, \T0
    mulx   \T0, \T1, 40\M1
    adcx   \Z5, \T1;    adox   \Z6, \T0;     adcx   \Z6, rax    
.endm



𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,0 × 𝑏𝑖,𝑗

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝0)/𝑟 

 For 𝑘 = 1 to 𝑙/ log 𝑟 − 1:

              𝑢 ← 𝑢 + 𝑟𝑘−1 σ𝑖=0
𝑡−1 𝑎𝑖,𝑘 × 𝑏𝑖,𝑗

 𝑢 ← 𝑢 + 𝑟𝑘−1(𝑞 × 𝑝𝑘)

             ⋮

HW example: finely integrated form
(Simplified)
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𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,0 × 𝑏𝑖,𝑗

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝0)/𝑟 

 For 𝑘 = 1 to 𝑙/ log 𝑟 − 1:

              𝑢 ← 𝑢 + 𝑟𝑘−1 σ𝑖=0
𝑡−1 𝑎𝑖,𝑘 × 𝑏𝑖,𝑗

 𝑢 ← 𝑢 + 𝑟𝑘−1(𝑞 × 𝑝𝑘)

             ⋮

HW example: finely integrated form
(Simplified)

𝑎0,𝑘

𝑎1,𝑘

𝑏0,𝑗

𝑏1,𝑗

𝑢

𝑝𝑘

𝑞

A pipelined one-cycle-per-iteration 
architecture (𝑡 = 2)
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 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,0 × 𝑏𝑖,𝑗

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝0)/𝑟 

 For 𝑘 = 1 to 𝑙/ log 𝑟 − 1:

              𝑢 ← 𝑢 + 𝑟𝑘−1 σ𝑖=0
𝑡−1 𝑎𝑖,𝑘 × 𝑏𝑖,𝑗

 𝑢 ← 𝑢 + 𝑟𝑘−1(𝑞 × 𝑝𝑘)

             ⋮

HW example: finely integrated form
(Simplified)

𝑎0,𝑘

𝑎1,𝑘

𝑏0,𝑗

𝑏1,𝑗

𝑢

𝑝𝑘

𝑞

𝑢 𝑢 𝑢

A pipelined one-cycle-per-iteration 
architecture (𝑡 = 2)
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𝑢 ← 0 
For 𝑗 = 0 to 𝑙/ log 𝑟 − 1:

 𝑢 ← 𝑢 + 
𝑖=0

𝑡−1

𝑎𝑖,0 × 𝑏𝑖,𝑗

 𝑞 ← 𝑢 × 𝑝′ mod 𝑟

 𝑢 ← (𝑢 + 𝑞 × 𝑝0)/𝑟 

 For 𝑘 = 1 to 𝑙/ log 𝑟 − 1:

              𝑢 ← 𝑢 + 𝑟𝑘−1 σ𝑖=0
𝑡−1 𝑎𝑖,𝑘 × 𝑏𝑖,𝑗

 𝑢 ← 𝑢 + 𝑟𝑘−1(𝑞 × 𝑝𝑘)

             ⋮

HW example: finely integrated form
(Simplified)

A pipelined one-cycle-per-iteration 
architecture (𝑡 = 2)

𝑎0,𝑘

𝑎1,𝑘

𝑏0,𝑗

𝑏1,𝑗

𝑢

𝑝𝑘

𝑞

𝑢 𝑢 𝑢

➢ Two instances optimal: 6 multipliers to 
execute one 𝔽𝑝2  mul in parallel.  
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Performance & (two) applications



Instruction count for one multiplication over 𝔽𝑝2   (x64 CPU)

Lazy reduction vs. new method
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Lazy reduction vs. new method

Instruction count for one multiplication over 𝔽𝑝2   (x64 CPU)
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Bilinear pairings
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• The efficient implementation of arithmetic over 𝔽𝑝𝑘 is critical for 
performance.

• The standard approach is to use a towering scheme.

Bilinear pairings
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• The efficient implementation of arithmetic over 𝔽𝑝𝑘 is critical for 
performance.

• The standard approach is to use a towering scheme.

• For example:

𝔽𝑝2 = 𝔽𝑝 𝑖 /(𝑖2 − 𝛽), with 𝛽 a non-square

𝔽𝑝4 = 𝔽𝑝2 𝑠 /(𝑠2 − ξ), with ξ = 𝛼 + 𝑖 a non-square

𝔽𝑝6 = 𝔽𝑝2 𝑣 /(𝑣3 − ξ), with ξ = 𝛼 + 𝑖 a non-cube

𝔽𝑝12 = 𝔽𝑝6 𝑤 /(𝑤2 − 𝑣) or 𝔽𝑝4 𝑡 /(𝑡3 − 𝑠) or 𝔽𝑝2 𝑤 /(𝑤6 − ξ) with    
   ξ = 𝛼 + 𝑖 a non-square, non-cube.

Bilinear pairings
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• Let 𝔽𝑝6 = 𝔽𝑝2 𝑣 /(𝑣3 − ξ), with ξ = 𝛼 + 𝑖 non-cube.

• Let 𝑎 = 𝑎0 + 𝑎1𝑣 + 𝑎2𝑣2 ∈ 𝔽𝑝6, where 𝑎𝑗 = 𝑎𝑗,0 + 𝑎𝑗,1𝑖 ∈ 𝔽𝑝2.

• The multiplication 𝑐 = 𝑐0, 𝑐1, 𝑐2 = 𝑎 ∙ 𝑏 in 𝔽𝑝6 can be done as:

Bilinear pairings
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• Let 𝔽𝑝6 = 𝔽𝑝2 𝑣 /(𝑣3 − ξ), with ξ = 𝛼 + 𝑖 non-cube.

• Let 𝑎 = 𝑎0 + 𝑎1𝑣 + 𝑎2𝑣2 ∈ 𝔽𝑝6, where 𝑎𝑗 = 𝑎𝑗,0 + 𝑎𝑗,1𝑖 ∈ 𝔽𝑝2.

• The multiplication 𝑐 = 𝑐0, 𝑐1, 𝑐2 = 𝑎 ∙ 𝑏 in 𝔽𝑝6 can be done as:

       pre-computed

Bilinear pairings
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Reference Strategy
Speed Memory

cc % bytes %

𝔽𝒑𝟐 mul

RELIC Separated mul/rdc. Karat+lazyr 566 - 1,920 -

This work Interleaved over 𝔽𝑝2 355 -37% 1,104 -43%

𝔽𝒑𝟔 mul

RELIC Separated mul/rdc. Karat+lazyr 3,376 - 6,320 -

This work New method over 𝔽𝑝2. Karat over 𝔽𝑝6 2,695 -20% 2,416 -62%

This work New method over 𝔽𝑝6 2,342 -31% 2,104 -67%

𝔽𝒑𝟏𝟐 mul

RELIC Separated mul/rdc. Karat+lazyr 10,061 - 16,040 -

This work New method over 𝔽𝑝6. Karat over 𝔽𝑝12 7,858 -22% 3,928 -76%

This work New method over 𝔽𝑝12 8,315 -17% 3,544 -78%

Full pairing

RELIC Separated mul/rdc. Karat+lazyr 3.15 × 106 - 23,198 -

This work New method over 𝔽𝑝6. Karat over 𝔽𝑝12 𝟐. 𝟐𝟗 × 𝟏𝟎𝟔 -27% 12,752 -45%

This work New method over 𝔽𝑝12 2.30 × 106 -27% 11,792 -49%

(*) Obtained on a 3.4GHz Intel Core i7-6700 (Skylake) processor.

Performance on x64 CPU (curve BLS12-381)
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Supersingular isogeny-based schemes
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2022
➢ July 2022: a series of papers starting with Castryck and Decru 

breaks SIDH/SIKE in polynomial time.  

Supersingular isogeny-based schemes
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Supersingular isogeny-based schemes: the comeback 
SQISign
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Supersingular isogeny-based schemes: the comeback 
SQISign

• Main idea: take a curve 𝐸𝐴 as public key and End(𝐸𝐴) as the private key. 
A SQISign signer needs to prove knowledge of End(𝐸𝐴) by solving the 
isogeny problem.  
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Supersingular isogeny-based schemes: the comeback 
SQISign

• Main idea: take a curve 𝐸𝐴 as public key and End(𝐸𝐴) as the private key. 
A SQISign signer needs to prove knowledge of End(𝐸𝐴) by solving the 
isogeny problem.  

• SQISign offers the smallest (pk + sign) sizes in the PQC world.

Primitive NIST level pk (bytes) sign (bytes)

SQISign 1 64 204

Dilithium 1 1312 2420
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• Challenge: it’s very slow.
 

Supersingular isogeny-based schemes: the comeback 
SQISign
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• Challenge: it’s very slow.

• Underlying arithmetic is constructed over 𝔽𝑝2!

• The proposed method speeds up sign + verify by ~1.68 ×                      
(NIST level 1 using new 254-bit prime 𝑝3923)
• E.g., verify (Skylake) cycles are reduced from 60 million to 22 million.

Supersingular isogeny-based schemes: the comeback 
SQISign

CHES 2023, Sep 2023                                Patrick Longa  – Efficient Algorithms for Large Prime Characteristic Fields                                                                  16 



• Challenge: it’s very slow.

• Underlying arithmetic is constructed over 𝔽𝑝2!

• The proposed method speeds up sign + verify by ~1.68 ×                      
(NIST level 1 using new 254-bit prime 𝑝3923)
• E.g., verify (Skylake) cycles are reduced from 60 million to 22 million.

• SQISign is in Round 1 of NIST’s Call for Additional Signatures Schemes.  

https://sqisign.org/

Supersingular isogeny-based schemes: the comeback 
SQISign
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