
Actively Secure Polynomial

Evaluation from Shared

Polynomial Encodings

Pascal Reisert, Marc Rivinius

Toomas Krips, Sebastian

Hasler, and Ralf Küsters

MPC Setup

1

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

a b c

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

function f

a b c

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

function f

a b c

A B C

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

function f

a b c

A B C

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

MPC Setup

Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

function f

a b c

A B C

Up to n − 1 actively malicious parties.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 4

SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 4

SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 4

SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 4

SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 4

New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

Randomized
Encodings

2

Randomized Encodings

We use randomized encodings that exist for more than 20 years [IK00],
but are not explicitly used in SPDZ-like protocols yet.

Definition. Let X, Y, Ŷ , A be finite sets and let f : X → Y . A function
f̂ : X × A → Ŷ is called randomized encoding of f if the following holds:

Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that

X × A
f̂ //

pr1

��

Ŷ

Rec
��

X
f

// Y

commutes, where pr1 : X × A → X, (x, a) 7→ x is the projection.
Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are
identically distributed for all x ∈ X if a is sampled uniformly from A.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 7

Randomized Encodings

We use randomized encodings that exist for more than 20 years [IK00],
but are not explicitly used in SPDZ-like protocols yet.

Definition. Let X, Y, Ŷ , A be finite sets and let f : X → Y . A function
f̂ : X × A → Ŷ is called randomized encoding of f if the following holds:

Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that

X × A
f̂ //

pr1

��

Ŷ

Rec
��

X
f

// Y

commutes, where pr1 : X × A → X, (x, a) 7→ x is the projection.
Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are
identically distributed for all x ∈ X if a is sampled uniformly from A.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 7

Randomized Encodings

Example. For f(x0, x1) = x0x1 take

f̂ = (y0, y1, y2) = (x0 − a0, x1 − a1, a1(x0 − a0) + a0(x1 − a1) + a0a1)

for a0, a1 ∈ A and reconstruct by

Rec(y0, y1, y2) = y0y1 + y2 = x0x1

.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 8

Randomized Encodings as MPC Protocols

For f(x0, . . . , xm−1): Compute randomized encoding f̂ = (yl)0≤l<k

on shares of inputs [xj] and randomness [at].

P0

P2

P1

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Randomized Encodings as MPC Protocols

The parties exchange all shares of the masked input values yl = xl − al,
0 ≤ l < m, parallely and each party reconstructs the yl locally.

[yl]0 = [xj − aj]0

[yl]1 = [xj − aj]1

[y
l]0 =

[x
j −

a
j]0

[y
l]2 =

[x
j −

a
j]2

[y l
]1

=
[xj

−
aj

]1

[y l
]2

=
[xj

−
aj

]2
P0

P2

P1

Round 1

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Randomized Encodings as MPC Protocols

The parties exchange all shares of the masked input values yl = xl − al,
0 ≤ l < m, parallely and each party reconstructs the yl locally.

(yj)0≤l<m

(yj)0≤l<m

(yj)0≤l<m

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Randomized Encodings as MPC Protocols

The parties compute shares of the yl, l ≥ m locally, e.g.,
[y2] = [a1](x0 − a0) + [a0](x1 − a1) + [a0a1] for m = 2 and f(x0, x1) = x0x1.
They exchange the shares and reconstruct with Rec(y0, y1, y2) = y0y1 + y2.

[y2]0

[y2]1

[y2]0[y2]2
[y2]1

[y2]2

Only works if the [yl] can be
computed from the public
(yℓ)ℓ<m and shares locally.
⇒ yl linear in the shares,

but any degree in
the public yℓ.Round 2

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Randomized Encodings as MPC Protocols

The parties compute shares of the yl, l ≥ m locally, e.g.,
[y2] = [a1](x0 − a0) + [a0](x1 − a1) + [a0a1] for m = 2 and f(x0, x1) = x0x1.
They exchange the shares and reconstruct with Rec(y0, y1, y2) = y0y1 + y2.

Rec(y0, y1, y2)

Rec(y0, y1, y2)

Rec(y0, y1, y2)

Only works if the [yl] can be
computed from the public
(yℓ)ℓ<m and shares locally.
⇒ yl linear in the shares,

but any degree in
the public yℓ.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Randomized Encodings as MPC Protocols

The parties compute shares of the yl, l ≥ m locally, e.g.,
[y2] = [a1](x0 − a0) + [a0](x1 − a1) + [a0a1] for m = 2 and f(x0, x1) = x0x1.
They exchange the shares and reconstruct with Rec(y0, y1, y2) = y0y1 + y2.

f(x0, x1)

f(x0, x1)

f(x0, x1)

Only works if the [yl] can be
computed from the public
(yℓ)ℓ<m and shares locally.
⇒ yl linear in the shares,

but any degree in
the public yℓ.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 x2x3 − a23 x0x1a23 − a01,23 x2x3a01 − a23,01+ + a01,23 + a23,01 − a01a23

We get 4 polynomials of degree 2 in the xi.

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 = y′
0 · y′

1 + y′
2 − a01

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 = y′
0 · y′

1 + y′
2 − a01

x0 − a0 x1 − a1 x0a1 − a0,1 x1a0 − a1,0 a0,1 + a1,0 − a0a1 − a01+ +

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 = y′
0 · y′

1 + y′
2 − a01

x0 − a0 x1 − a1 x0a1 − a0,1 x1a0 − a1,0 a0,1 + a1,0 − a0a1 − a01+ +

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 = y′
0 · y′

1 + y′
2 − a01

x0 − a0 x1 − a1 x0a1 − a0,1 x1a0 − a1,0 a0,1 + a1,0 − a0a1 − a01+ +

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

x0 · · · x3 = · +y0 y1 y2

x0x1 − a01 = y′
0 · y′

1 + y′
2 − a01

x0 − a0 x1 − a1 x0a1 − a0,1 x1a0 − a1,0 a0,1 + a1,0 − a0a1 − a01+ +

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 10

Our
Randomized
Encodings

3

Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 12

Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x2x3a01 −a23,01 + + r0x0x1a23 −a01,23

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 12

Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x2x3a01 −a23,01 + + r0x0x1a23 −a01,23

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0 x0 −a0 x1a23 −a1,23 x0a1,23 −a0,123 x1a0a23 −a1,0,23+ + r2

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 12

Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x2x3a01 −a23,01 + + r0x0x1a23 −a01,23

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0 x0 −a0 x1a23 −a1,23 x0a1,23 −a0,123 x1a0a23 −a1,0,23+ + r2

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 12

Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x2x3a01 −a23,01 + + r0x0x1a23 −a01,23

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0 x0 −a0 x1a23 −a1,23 x0a1,23 −a0,123 x1a0a23 −a1,0,23+ + r2

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 12

Our New Randomized Encodings

Fortunately, for the multiple terms in our construction, we could show
that the reduced concatenation provides a secure randomized encoding.

We are then able to compute a product x0 · · · xm−1 with a randomized
encoding of output size O(m log(m)).

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 13

Our New Randomized Encodings

Fortunately, for the multiple terms in our construction, we could show
that the reduced concatenation provides a secure randomized encoding.

We are then able to compute a product x0 · · · xm−1 with a randomized
encoding of output size O(m log(m)).

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 13

Our New Randomized Encodings

We then extend our approach to general monomials of the form
xd0

0 · · · x
dm−1
m−1 and further to arbitrary polynomials.

We further extend the approach to other tree structures, where we can
multiply any number of inputs in one multiplication node (instead of 2 in the
example above), e.g.:

x0 · · · x8 = (x0x1x2 − a012)(x3x4x5 − a345)(x6x7x8 − a678) + (degree ≤ 3 in the xj)

We present a recursive formula to compute the exact output size and randomness
size for all resulting randomized encodings in our paper.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 14

Our New Randomized Encodings

We then extend our approach to general monomials of the form
xd0

0 · · · x
dm−1
m−1 and further to arbitrary polynomials.

We further extend the approach to other tree structures, where we can
multiply any number of inputs in one multiplication node (instead of 2 in the
example above), e.g.:

x0 · · · x8 = (x0x1x2 − a012)(x3x4x5 − a345)(x6x7x8 − a678) + (degree ≤ 3 in the xj)

We present a recursive formula to compute the exact output size and randomness
size for all resulting randomized encodings in our paper.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 14

Our New Randomized Encodings

We then extend our approach to general monomials of the form
xd0

0 · · · x
dm−1
m−1 and further to arbitrary polynomials.

We further extend the approach to other tree structures, where we can
multiply any number of inputs in one multiplication node (instead of 2 in the
example above), e.g.:

x0 · · · x8 = (x0x1x2 − a012)(x3x4x5 − a345)(x6x7x8 − a678) + (degree ≤ 3 in the xj)

We present a recursive formula to compute the exact output size and randomness
size for all resulting randomized encodings in our paper.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 14

Comparison
and
Benchmarks

4

Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 16

Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 16

Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 16

Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 16

Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 16

Theoretical Comparison

We get the following comparison for the computation of x
d/m
1 · · · x

d/m
m−1

of degree d with d/m ∈ N per party:

Approach Rounds Bandwidth Tuple Size

Beaver Triples dlog de 2(m−1)dlog d
m e 3(m−1)dlog d/me

e.g. for d = m = 16 4 30 45
Tuples from [CWB18] 1 m (d

m + 1)m − 1
e.g. for d = m = 16 1 16 65535
Example of a Polytuple 1 O(m log(m)) O(d(log m)2)
e.g. for d = m = 16 1 41 149

The round count does not include the opening round (which is needed for all
compared protocols).

The table includes only one example of a polytuple; depending on the setup, we can
get different trade-offs.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 17

Theoretical Comparison

We get the following comparison for the computation of x
d/m
1 · · · x

d/m
m−1

of degree d with d/m ∈ N per party:

Approach Rounds Bandwidth Tuple Size

Beaver Triples dlog de 2(m−1)dlog d
m e 3(m−1)dlog d/me

e.g. for d = m = 16 4 30 45
Tuples from [CWB18] 1 m (d

m + 1)m − 1
e.g. for d = m = 16 1 16 65535
Example of a Polytuple 1 O(m log(m)) O(d(log m)2)
e.g. for d = m = 16 1 41 149

The round count does not include the opening round (which is needed for all
compared protocols).

The table includes only one example of a polytuple; depending on the setup, we can
get different trade-offs.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 17

Multi-Round Use and Flexibility

For example, we can use more communication rounds:

0 5 10 15 20 25 30
0

100

200

300

400

m

tu
pl
e
si
ze
/e
le
m
en

ts 1 round

2 rounds

3 rounds

4 rounds

Beaver

0 5 10 15 20 25 30
0

20

40

60

80

100

m

ba
nd

w
id
th
/e
le
m
en

ts

We can also use different variants of our randomized encoding to trade reduced
bandwidth against larger tuple size (while keeping the same round complexity).

⇒ Our protocols can be adapted to different setups, i.e., to bandwidth rate restrictions,
network delay, or local computational power.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 18

Multi-Round Use and Flexibility

For example, we can use more communication rounds:

0 5 10 15 20 25 30
0

100

200

300

400

m

tu
pl
e
si
ze
/e
le
m
en

ts 1 round

2 rounds

3 rounds

4 rounds

Beaver

0 5 10 15 20 25 30
0

20

40

60

80

100

m

ba
nd

w
id
th
/e
le
m
en

ts

We can also use different variants of our randomized encoding to trade reduced
bandwidth against larger tuple size (while keeping the same round complexity).

⇒ Our protocols can be adapted to different setups, i.e., to bandwidth rate restrictions,
network delay, or local computational power.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 18

Multi-Round Use and Flexibility

For example, we can use more communication rounds:

0 5 10 15 20 25 30
0

100

200

300

400

m

tu
pl
e
si
ze
/e
le
m
en

ts 1 round

2 rounds

3 rounds

4 rounds

Beaver

0 5 10 15 20 25 30
0

20

40

60

80

100

m

ba
nd

w
id
th
/e
le
m
en

ts

We can also use different variants of our randomized encoding to trade reduced
bandwidth against larger tuple size (while keeping the same round complexity).

⇒ Our protocols can be adapted to different setups, i.e., to bandwidth rate restrictions,
network delay, or local computational power.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 18

Implementation

We have implemented our protocols as an extension of
MP-SPDZ [Kel20], the state-of-the-art implementation of SPDZ-like
protocols.

Our implementation has been submitted as an artifact to Asiacrypt 2024 and has
been accepted. It will be published with the paper.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 19

Implementation

We have implemented our protocols as an extension of
MP-SPDZ [Kel20], the state-of-the-art implementation of SPDZ-like
protocols.

Our implementation has been submitted as an artifact to Asiacrypt 2024 and has
been accepted. It will be published with the paper.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 19

Evaluation of Polynomials

Evaluation of a Gaussian function in 32 variables with different
network delays.

5 7.5 10 12.5 15 17.5 20
30
35
40
45
50
55
60

degree

tim
e/
m
s

5 7.5 10 12.5 15 17.5 20

80

100

120

140

degree

tim
e/
m
s

5 7.5 10 12.5 15 17.5 20
120

155

190

225

260

degree

tim
e/
m
s

Figure: Benchmarks for Gaussian with 32 variables with 2ms (left), 5ms (middle), 10ms (right) delay; (blue:
default MP-SPDZ implementation, orange/dashed: ours).

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 20

Comparisons and Rankings

We can also employ polytuples to (bit-wise) compare values (similar
to [Dam+06]).

For sorting 40 items we then get:

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 21

Comparisons and Rankings

We can also employ polytuples to (bit-wise) compare values (similar
to [Dam+06]).

For sorting 40 items we then get:

0 2.5 5 7.5 10 12.5 15 17.5 20
0
1
2
3
4
5
6

delay/ms

tim
e/
s

(a) Using pairwise inequality tests.

0 2.5 5 7.5 10 12.5 15 17.5 20
0

10

20

30

40

50

delay/ms

tim
e/
s

(b) Using inequality and equality tests.

Figure: Benchmarks for sorting (blue: default MP-SPDZ implementation, orange/dashed: ours, green/dotted:
MP-SPDZ with edabits [Esc+20]).

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 21

Application to Machine Learning Networks

We can use the same approach to compute comparison operations
within machine learning networks.

For example, if we only compute the Argmax layer (left) with our new
protocol, we get for a toy ML network (right):

(a) ArgMax Layer, unlimited rate. (b) Network A [MZ17].

Figure: Benchmarks for an ArgMax layer and the evaluation of a sample neural network included in
MP-SPDZ [Kel20] as network A (cf. [Ria+18]; blue: default MP-SPDZ, orange: ours) both without bandwidth
restriction.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 22

Application to Machine Learning Networks

We can use the same approach to compute comparison operations
within machine learning networks.

For example, if we only compute the Argmax layer (left) with our new
protocol, we get for a toy ML network (right):

(a) ArgMax Layer, unlimited rate. (b) Network A [MZ17].

Figure: Benchmarks for an ArgMax layer and the evaluation of a sample neural network included in
MP-SPDZ [Kel20] as network A (cf. [Ria+18]; blue: default MP-SPDZ, orange: ours) both without bandwidth
restriction.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 22

Summary

5

Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 24

Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 24

Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 24

Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 24

Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 24

Thank you!

Institute of Information Security
University of Stuttgart
Germany

Web sec.uni-stuttgart.de
Phone +49 711 685 88208

https://www.sec.uni-stuttgart.de/

References

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “Cryptography in NC°”. In: SIAM Journal on Computing 36.4 (2006), pp. 845–888.

[CWB18] Hyunghoon Cho, David Wu, and Bonnie Berger. “Secure genome-wide association analysis using multiparty computation”. In: Nat. Biotechnol. 36.6 (2018),
pp. 547–551.

[Che+20] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song, and Sameer Wagh. “Maliciously Secure Matrix Multiplication with Applications to
Private Deep Learning”. In: ASIACRYPT 2020. Implementation: https://github.com/snwagh/ponytail-public/. Springer, 2020, pp. 31–59.

[Cou19] Geoffroy Couteau. “A note on the communication complexity of multiparty computation in the correlated randomness model”. In: EUROCRYPT. Springer.
2019, pp. 473–503.

[Cra+03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyial Kushilevitz. “Efficient Multi-party Computation over Rings”. In: Advances in Cryptology — EUROCRYPT 2003.
Ed. by Eli Biham. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 596–613.

[Dam+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. “Unconditionally Secure Constant-Rounds Multi-party Computation for
Equality, Comparison, Bits and Exponentiation”. In: TCC 2006. Springer, 2006, pp. 285–304.

[Dam+12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multiparty Computation from Somewhat Homomorphic Encryption”. In: CRYPTO 2012.
Springer, 2012, pp. 643–662.

[Esc+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits”. In:
CRYPTO 2020. Springer, 2020, pp. 823–852.

[IK00] Y. Ishai and E. Kushilevitz. “Randomizing polynomials: A new representation with applications to round-efficient secure computation”. In: FOCS. 2000,
pp. 294–304.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: Making SPDZ Great Again”. In: EUROCRYPT 2018. Springer, 2018, pp. 158–189.

[Kel20] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: CCS ’20: 2020 ACM, Virtual Event. ACM, 2020, pp. 1575–1590.

[MZ17] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-Preserving Machine Learning”. In: SP 2017. IEEE Computer Society, 2017,
pp. 19–38.

[Rei+23] Pascal Reisert, Marc Rivinius, Toomas Krips, and Ralf Küsters. “Overdrive LowGear 2.0: Reduced-Bandwidth MPC without Sacrifice”. In: ACM ASIA Conference
on Computer and Communications Security (ASIA CCS ’23), July 10–14, 2023, Melbourne, VIC, Australia. 2023. URL: https://ia.cr/2023/462.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 26

https://github.com/snwagh/ponytail-public/
https://ia.cr/2023/462

[Ria+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar. “Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications”. In: AsiaCCS 2018. ACM, 2018, pp. 707–721.

[Riv+23] Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters. “Convolutions in Overdrive: Maliciously Secure Convolutions for MPC”. In: Privacy Enhancing
Technologies Symposium (PETS 2023). 2023. URL: https://ia.cr/2023/359.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 27

https://ia.cr/2023/359

Acknowledgments

This research was supported by the CRYPTECS project founded by the
German Federal Ministry of Education and Research under Grant
Agreement No. 16KIS1441 and by the French National Research Agency
under Grant Agreement No. ANR-20-CYAL-0006 and by Advantest as part
of the Graduate School “Intelligent Methods for Test and Reliability”
(GS-IMTR) at the University of Stuttgart. Additionally, this research
was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Fundation) – 411720488. Furthermore, Toomas Krips was partly supported by the
Estonian Research Council, ETAG, through grant PRG 946.

Sebastian Hasler: Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 28

	MPC Setup
	Randomized Encodings
	Our Randomized Encodings
	Comparison and Benchmarks
	Summary
	References

