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Multiple parties want to compute a function f on secret inputs a, b, c ∈ Fq.

Up to n − 1 actively malicious parties.
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SPDZ and Generalizations

State of the art maliciously secure protocol to compute
arithmetic functions:

SPDZ [Dam+12] and its improvements, e.g., Overdrive [KPR18]

Additions and multiplications with public values is non-interactive

Multiplications need interaction and preprocessed data,
classically Beaver triples.

Classical Approach:

Only addition & multiplication gates

One communication round and sufficiently many Beaver triples for each layer of
multiplications

⇒ Our Approach: Replace Beaver triples by a new form of structured randomness to
reduce communication down to one (amortized) round.
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New Forms of Structured Randomness

Optimized structured randomness has already been introduced
in recent years

E.g., to optimize typical operations in privacy-preserving ML:

Matrix triples for matrix multiplications, e.g., in [Che+20; Rei+23]

Convolution triples for Tensor convolutions, e.g., in [Che+20; Riv+23]

Another typical operation is polynomial evaluation. Unfortunately, for multivariate
polynomials, known one-round solutions [CWB18; Cou19] come with exponential size
of the structured randomness

⇒ inefficient for large polynomial degrees

We address this problem:

New form of (moderately-sized) structured randomness (called polytuples) to
evaluate multivariate polynomials and comparisons in one (amortized) round
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Randomized Encodings

We use randomized encodings that exist for more than 20 years [IK00],
but are not explicitly used in SPDZ-like protocols yet.

Definition. Let X, Y, Ŷ , A be finite sets and let f : X → Y . A function
f̂ : X × A → Ŷ is called randomized encoding of f if the following holds:

Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that

X × A
f̂ //

pr1

��

Ŷ

Rec
��

X
f

// Y

commutes, where pr1 : X × A → X, (x, a) 7→ x is the projection.
Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are
identically distributed for all x ∈ X if a is sampled uniformly from A.
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Randomized Encodings

Example. For f(x0, x1) = x0x1 take

f̂ = (y0, y1, y2) = (x0 − a0, x1 − a1, a1(x0 − a0) + a0(x1 − a1) + a0a1)

for a0, a1 ∈ A and reconstruct by

Rec(y0, y1, y2) = y0y1 + y2 = x0x1

.
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Randomized Encodings as MPC Protocols

For f(x0, . . . , xm−1): Compute randomized encoding f̂ = (yl)0≤l<k

on shares of inputs [xj ] and randomness [at].

P0

P2

P1
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Randomized Encodings as MPC Protocols

The parties exchange all shares of the masked input values yl = xl − al,
0 ≤ l < m, parallely and each party reconstructs the yl locally.

[yl]0 = [xj − aj ]0

[yl]1 = [xj − aj ]1

[y
l ]0 =

[x
j −

a
j ]0

[y
l ]2 =

[x
j −

a
j ]2

[y l
]1

=
[xj

−
aj

]1

[y l
]2

=
[xj

−
aj

]2
P0

P2

P1

Round 1
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Randomized Encodings as MPC Protocols

The parties compute shares of the yl, l ≥ m locally, e.g.,
[y2] = [a1](x0 − a0) + [a0](x1 − a1) + [a0a1] for m = 2 and f(x0, x1) = x0x1.
They exchange the shares and reconstruct with Rec(y0, y1, y2) = y0y1 + y2.

[y2]0

[y2]1

[y2 ]0[y2 ]2
[y2]1

[y2]2

Only works if the [yl] can be
computed from the public
(yℓ)ℓ<m and shares locally.
⇒ yl linear in the shares,

but any degree in
the public yℓ.Round 2
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Results on Randomized Encodings

Randomized Encodings can be concatenated and composed [AIK06],
e.g.,

Similarly we get 4 polynomials of degree 1 in the xi for all of the degree-2 terms.

The approach extends to degree m = 2n, i.e., we split x0 · · · xm−1 in 4 degree m
2

terms and then each of these terms again in 4 m
4 terms, and so on.

⇒ Output size of the encoding is in O(4n) = O(m2) (cf. [Cra+03] for a similar result).

⇒ All terms are of total degree at most 3 (counting inputs and randomness to the
degree), which is the theoretical minimum established in [Cra+03].
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Our New Randomized Encodings

We can improve over the abovementioned generic approach with
standard composition and concatenation:

x0 · · · x3 = · +y0 y1 y2

x0 −a0 x1 −a1 x0a1 −a0,1 + + r1x1a0 −a1,0

If polynomials can be used in different reconstructions, we only need to output them
once! Then the output size is reduced.

Note: generally for two randomized encodings (yl)l≥0 of f and (y′
l)l≥0 of g with

y0 = y′
0, the reduced concatenation (y0, yl, y′

l)l≥1 is not a secure randomized
encoding of f × g.
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Our New Randomized Encodings

Fortunately, for the multiple terms in our construction, we could show
that the reduced concatenation provides a secure randomized encoding.

We are then able to compute a product x0 · · · xm−1 with a randomized
encoding of output size O(m log(m)).
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Our New Randomized Encodings

We then extend our approach to general monomials of the form
xd0

0 · · · x
dm−1
m−1 and further to arbitrary polynomials.

We further extend the approach to other tree structures, where we can
multiply any number of inputs in one multiplication node (instead of 2 in the
example above), e.g.:

x0 · · · x8 = (x0x1x2 − a012)(x3x4x5 − a345)(x6x7x8 − a678) + (degree ≤ 3 in the xj)

We present a recursive formula to compute the exact output size and randomness
size for all resulting randomized encodings in our paper.
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Our Resulting MPC protocols

We compute the structured randomness of the randomized encoding
as an authenticated tuple. We call this polytuple.

The offline phase is linear in the tuple size.

In the online phase, the number of elements sent equals the output size of the
randomized encoding.

Our protocol needs one round to exchange the masks and one opening round
(which in the malicious setup includes a MAC check).

Our protocol can be used in a multi-round fashion where f1 ◦ · · · ◦ fn is evaluated in
n rounds plus one opening round.
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Theoretical Comparison

We get the following comparison for the computation of x
d/m
1 · · · x

d/m
m−1

of degree d with d/m ∈ N per party:

Approach Rounds Bandwidth Tuple Size

Beaver Triples dlog de 2(m−1)dlog d
m e 3(m−1)dlog d/me

e.g. for d = m = 16 4 30 45
Tuples from [CWB18] 1 m ( d

m + 1)m − 1
e.g. for d = m = 16 1 16 65535
Example of a Polytuple 1 O(m log(m)) O(d(log m)2)
e.g. for d = m = 16 1 41 149

The round count does not include the opening round (which is needed for all
compared protocols).

The table includes only one example of a polytuple; depending on the setup, we can
get different trade-offs.
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Multi-Round Use and Flexibility

For example, we can use more communication rounds:
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We can also use different variants of our randomized encoding to trade reduced
bandwidth against larger tuple size (while keeping the same round complexity).

⇒ Our protocols can be adapted to different setups, i.e., to bandwidth rate restrictions,
network delay, or local computational power.
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Implementation

We have implemented our protocols as an extension of
MP-SPDZ [Kel20], the state-of-the-art implementation of SPDZ-like
protocols.

Our implementation has been submitted as an artifact to Asiacrypt 2024 and has
been accepted. It will be published with the paper.
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Evaluation of Polynomials

Evaluation of a Gaussian function in 32 variables with different
network delays.
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Figure: Benchmarks for Gaussian with 32 variables with 2ms (left), 5ms (middle), 10ms (right) delay; (blue:
default MP-SPDZ implementation, orange/dashed: ours).
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Comparisons and Rankings

We can also employ polytuples to (bit-wise) compare values (similar
to [Dam+06]).

For sorting 40 items we then get:
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(b) Using inequality and equality tests.

Figure: Benchmarks for sorting (blue: default MP-SPDZ implementation, orange/dashed: ours, green/dotted:
MP-SPDZ with edabits [Esc+20]).
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Application to Machine Learning Networks

We can use the same approach to compute comparison operations
within machine learning networks.

For example, if we only compute the Argmax layer (left) with our new
protocol, we get for a toy ML network (right):

(a) ArgMax Layer, unlimited rate. (b) Network A [MZ17].

Figure: Benchmarks for an ArgMax layer and the evaluation of a sample neural network included in
MP-SPDZ [Kel20] as network A (cf. [Ria+18]; blue: default MP-SPDZ, orange: ours) both without bandwidth
restriction.
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Summary

We introduce a new family of randomized encodings for the evaluation
of multivariate polynomials and new correlated randomness (polytuples).

Our randomized encodings have the smallest known output size for
arbitrary monomials.

We integrate the randomized encodings into a dishonest majority actively secure
MPC protocol. Our approach evaluates a multivariate polynomial in just one round
of online communication plus one opening round.

Our tuple size is significantly lower than for existing single-round approaches, and
also multi-round computations yield improvements (e.g., lower bandwidth and
round complexity than Beaver multiplication).

We evaluated the performance of our protocols for sample applications (evaluation
of polynomials, comparisons of secret-shared values, simple machine learning
algorithms) and show that polytuples speed up these computations compared to
Beaver multiplication.
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Thank you!
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